
Oracle9i: SQL for End Users

Student Guide

40060GC10
Production 1.0
November 2001
D34060

Copyright © Oracle Corporation, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

Oracle, Oracle Applications, Oracle Bills of Materials, Oracle Financials, Oracle
Forms, Oracle General Ledger, Oracle Graphics, Oracle Human Resources, Oracle
Energy Upstream Applications, Oracle Energy Applications, Oracle Parallel Server,
Oracle Projects, Oracle Purchasing, Oracle Sales and Marketing, Oracle7 Server, and
SmartClient are trademarks or registered trademarks of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Author

Priya Nathan

Technical Contributors
and Reviewers
Anthony Nicoletti
Christopher Lawless
Christina Yetman
Helen Robertson
Ligia Robayo
Claire Bennett
Vasily Strelnikov
Andrew Brannigan
Jonathan Grove
Mozhe Jalali
Janet Stern
Chris Nguyen
Mehrdad Soltani

Publisher

Shane Mattimoe

Preface

Introduction
Objectives I-2
System Development Life Cycle I-3
Data Storage on Different Media I-5
Relational Database Concepts I-6
Data Models I-7
The Employee and Department Data Model I-9
Definition of a Relational Database I-10
The EMPLOYEES Table I-11
Relational Database Terminology I-12
Relating Multiple Tables I-14
Oracle8: Object Relational Database Management System I-16
Oracle8i: Internet Platform I-17
Oracle9i I-18
Oracle9i Application Server I-20
Oracle9i Database I-21
Communicating with RDBMS Using SQL I-22
Data Types Supported in SQL I-24
SQL Statements I-26
Overview of Course Material I-28
Tables Used in the Course I-29
Summary I-30

1 Writing Basic SELECT SQL Statements
Objectives 1-2
Capabilities of SQL SELECT Statements 1-3
Basic SELECT Statement 1-4
Writing SQL Statements 1-6
Retrieving All Columns from a Table 1-7
Selecting All Columns 1-8
Creating a Projection on a Table 1-9
Selecting Specific Columns 1-10
Default Data Justification 1-12
Arithmetic Expressions 1-13
Using Arithmetic Operators 1-14
Using Arithmetic Operators on Multiple Columns 1-15
Operator Precedence 1-16
Using Parentheses 1-18
Defining a Column Alias 1-19
Using Column Aliases 1-20
The Concatenation Operator 1-21
Using the Concatenation Operator 1-22
Literals 1-23
Using Literal Character Strings 1-24
Duplicate Rows 1-25

Contents

iii

Eliminating Duplicate Rows 1-26
SQL and iSQL*Plus Interaction 1-27
SQL Statements Versus iSQL*Plus Commands 1-28
Overview of iSQL*Plus 1-29
Logging On to iSQL*Plus 1-30
The iSQL*Plus Environment 1-32
Interactig with Script Files 1-33
Displaying Table Structure 1-37
Summary 1-39
Practice 1 Overview 1-40

2 Restricting and Sorting Data
Objectives 2-2
Limiting Rows by Using a Restriction 2-3
Limiting the Rows Selected by a Query 2-4
Using the WHERE Clause 2-5
Character Strings and Dates 2-6
Comparison Operators 2-7
Using the Comparison Operators with Characters 2-8
Other SQL Comparison Operators 2-9
Using the BETWEEN Operator 2-10
Using the IN Operator 2-11
Using the IN Operator with Strings 2-12
Using the LIKE Operator 2-13
Using the IS NULL Operator 2-15
Logical Operators 2-16
Using the AND Operator 2-17
Using the OR Operator 2-19
Using the NOT Operator 2-21
Rules of Precedence 2-25
ORDER BY Clause 2-28
Sorting in Descending Order 2-29
Sorting by Column Alias 2-30
Sorting by Multiple Columns 2-31
Sorting by a Column Not in the SELECT List 2-32
Summary 2-33
Practice 2 Overview 2-34

3 Single-Row Number and Character Functions
Objectives 3-2
How does a Function Work? 3-3
How SQL Functions Work 3-4
Example of a Function 3-5
Two Types of SQL Functions 3-6
Single-Row Functions 3-7
Calling a Function in SQL 3-9

iv

Character Functions 3-10
Case Conversion Functions 3-11
Using Case Conversion Functions 3-12
Number Functions 3-14
Using the ROUND Function 3-15
Using the TRUNC Function 3-16
Defining a NULL Value 3-17
Null Values in Arithmetic Expressions 3-18
The NVL Function 3-19
Using the NVL Function to Handle Null Values 3-20
Summary 3-21
Practice 3 Overview 3-22

4 Single-Row Date and Conversion Functions
Objectives 4-2
Single-Row Functions 4-3
Working with Dates 4-4
RR Date Format 4-6
SYSDATE 4-7
Arithmetic with Dates 4-8
Using Arithmetic Operators with Dates 4-9
Using SYSDATE in Calculations 4-10
Explicit Data Type Conversion 4-11
Modifying the Display Format of Dates 4-13
TO_CHAR Function with Dates 4-14
Date Format Model Elements 4-15
Using the TO_CHAR Function with Dates 4-17
Date Format Model Elements 4-24
Using Format Models to Display Time 4-26
TO_CHAR Function with Numbers 4-28
Using the TO_CHAR Function with Numbers 4-30
Using the TO_NUMBER and TO_DATE Functions 4-31
Using the TO_NUMBER Function 4-32
Using the TO_DATE Function 4-33
Date Functions 4-34
Using Date Functions 4-35
Examples of Date Functions 4-36
Nesting Functions 4-37
Using ROUND and TRUNC with Date Functions 4-40
Summary 4-41
Practice 4 Overview 4-42

5 Displaying Data from Multiple Tables
Objectives 5-2
Obtaining Data From Multiple Tables 5-3
Joining Tables Using Oracle Syntax 5-4
Cartesian Product 5-6

v

Generating a Cartesian Product 5-7
Types of Joins 5-9
What Is an Equijoin? 5-10
Retrieving Records with Equijoins 5-11
Qualifying Ambiguous Column Names 5-12
Additional Search Conditions Using the AND Operator 5-13
Using Additional Search Conditions with a Join 5-14
Table Aliases 5-16
Using Table Aliases 5-17
Joining More than Two Tables 5-18
Non-Equijoins 5-19
Retrieving Records with Nonequijoins 5-20
Using Multiple Joins 5-21
Self Joins 5-22
Joining a Table to Itself 5-23
Joining Tables Using SQL: 1999 Syntax 5-24
Creating Cross Joins 5-25
Creating Natural Joins 5-26
Retrieving Records with Natural Joins 5-27
Summary 5-28
Practice 5 Overview 5-29

6 Aggregating Data by Using Group Functions
Objectives 6-2
What are Group Functions 6-3
Types of Group Functions 6-4
Guidelines for Using Group Functions 6-5
Using the AVG and SUM Functions 6-6
Using the MIN and MAX Functions 6-7
Using the COUNT Function 6-9
Group Function and Null Values 6-11
Using the NVL Function with Group Functions 6-12
Creating Groups of Data 6-14
Creating Groups of Data: GROUP BY Clause 6-15
Using the GROUP BY Clause 6-16
Using a Group Function in the ORDER BY Clause 6-19
Illegal Queries Using Group Functions 6-21
Summary 6-23
Practice 6 Overview 6-24

7 Writing Subqueries
Objectives 7-2
Using a Subquery to Solve a Problem 7-3
Subqueries 7-4

vi

Using a Subquery 7-5
Guidelines for Using Subqueries 7-6
Types of Subqueries 7-7
Single-Row Subqueries 7-8
Executing Single-Row Subqueries 7-9
Using Group Functions in a Subquery 7-12
Will This Statement Work? 7-13
What is Wrong with This Statement? 7-14
Multiple-Row Subqueries 7-15
Using Group Functions in a Multiple-Row Subquery 7-16
Summary 7-18
Practice 7 Overview 7-19

8 iSQL*Plus
Objectives 8-2
Interactive Reports 8-3
Substitution Variables 8-4
Using the & Substitution Variable 8-5
Using the SET VERIFY Command 8-6
Character and Date Values with Substitution Variables 8-8
Specifying Column Names, Expressions, and Text at Run Time 8-10
Specifying Column Names at Run Time 8-11
Specifying Column Names and Expressions at Run Time 8-13
Specifying Column Names, Expressions, and Text at Run Time 8-14
Using the && Substitution Variable 8-15
Defining User Variables 8-17
DEFINE and UNDEFINE Commands 8-18
Using the DEFINE Command 8-19
Customing the iSQL*PLUS Environment 8-20
SET Command Variables 8-21
Using SET Command Variables 8-22
iSQL*Plus Format Commands 8-24
The COLUMN Command 8-25
Using the COLUMN Command 8-26
COLUMN Format Models 8-29
Using the BREAK Command 8-30
Creating a Script File to Run a Report 8-32
Sample Report 8-34
Summary 8-35
Practice 8 Overview 8-36

Appendix A: Manipulating Data

Appendix B: Reporting with SQL*Plus

vii

Appendix C: Practice Solutions

Appendix D: Table Description and Data

Appendix E: Oracle9i Architecture

viii

Preface

Preface-3

Profile

Before You Begin This Course

Before you begin this course, you should be able to use a graphical user interface (GUI).
Required prerequisites are familiarity with data processing concepts and techniques.

How This Course Is Organized

Oracle9i: SQL For End Users is an instructor-led course featuring lectures and hands-on
exercises. Online demonstrations and written practice sessions reinforce the concepts and
skills introduced.

Preface-4

Related Publications

Oracle Publications

Title Part Number

Oracle9i Reference, Release 1 (9.0.1) A90190-02

Oracle9i SQL Reference, Release 1 (9.0.1) A90125-01

Oracle9i Concepts, Release 1 (9.0.0) A88856-02

Oracle9i Server Application Developer’s Guide Fundamentals

Release 1 (9.0.1) A88876-02

iSQL*Plus User’s Guide and Reference, Release 9.0.0 A88826-01

SQL*Plus User’s Guide and Reference, Release 9.0.1 A88827-02

Additional Publications

• System release bulletins

• Installation and user’s guides

• read.me files

• International Oracle User’s Group (IOUG) articles

• Oracle Magazine

Preface-5

Typographic Conventions
What follows are two lists of typographical conventions used specifically within text or within
code.

Typographic Conventions Within Text

Convention Object or Term Example

Uppercase Commands, Use the SELECT command to view
functions, information stored in the LAST_NAME
column names, column of the EMPLOYEES table.
table names,
PL/SQL objects,
schemas

Lowercase, Filenames, where: role is the name of the role
italic syntax variables, to be created.

usernames,
passwords

Initial cap Trigger and Assign a When-Validate-Item trigger to
button names the ORD block.

Choose Cancel.

Italic Books, names of For more information on the subject see
courses and Oracle Server SQL Language Reference
manuals, and Manual
emphasized
words or phrases Do not save changes to the database.

Quotation marks Lesson module This subject is covered in Lesson 3,
titles referenced “Working with Objects.”
within a course

Preface-6

Typographic Conventions (continued)

Typographic Conventions Within Code

Convention Object or Term Example

Uppercase Commands, SELECT employee_id
functions FROM employees;

Lowercase, Syntax variables CREATE ROLE role;
italic

Initial cap Forms triggers Form module: ORD
Trigger level: S_ITEM.QUANTITY
item
Trigger name: When-Validate-Item
. . .

Lowercase Column names, . . .
table names, OG_ACTIVATE_LAYER
filenames, (OG_GET_LAYER (’prod_pie_layer’))
PL/SQL objects . . .

SELECT last_name
FROM employees;

Bold Text that must CREATE USER scott
be entered by a IDENTIFIED BY tiger;
user

Copyright © Oracle Corporation, 2001. All rights reserved.

Relational Principles
and Oracle Concepts

Oracle9i: SQL for End Users I- 2

I-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the system life cycle development phases
• Discuss the theoretical and physical aspects of a

relational database
• Describe the Oracle implementation of the RDBMS

and ORDBMS
• Describe the Internet Platform Architecture
• Describe new features of Oracle9i

• Describe how SQL is used in the Oracle product set

Lesson Aim

In this lesson, you will gain an understanding of the relational database management system
(RDBMS), the object relational database management system (ORDBMS) and the new features of
Oracle9i.

Oracle9i: SQL for End Users I- 3

I-3 Copyright © Oracle Corporation, 2001. All rights reserved.

System Development Life Cycle

Strategy
and

Analysis
Design

Build
and

Document
Transition

Production

System Development Life Cycle

From concept to production, you can develop a database by following the system development life
cycle, which has multiple stages of development. This top-down, systematic approach to database
development transforms business information requirements into an operational database.

Strategy and Analysis

• Study and analyze the business requirements. Interview users and managers to identify the
information requirements. Incorporate the enterprise and application mission statements as
well as any future system specifications.

• Build models of the system. Transfer the business narrative into a graphical representation
of business information needs and rules. Confirm and refine the model with the analysts and
experts.

Design

Design the database based on the model developed in the strategy and analysis phase.

Build and Document

• Build the prototype system. Write and execute the commands to create the tables and
supporting objects for the database.

• Develop user documentation, Help text, and operation manuals to support the use and
operation of the system.

Oracle9i: SQL for End Users I- 4

System Development Life Cycle (continued)
Transition

Refine the prototype. Move an application into production with user-acceptance testing, conversion of
existing data, and parallel operations. Make required modifications.

Production

Roll out the system to the users. Operate the production system. Monitor its performance, and enhance
and refine the system.

Note: The various phases of the system development life cycle can be carried out iteratively. This course
focuses on the build phase of the system development life cycle.

Oracle9i: SQL for End Users I- 5

I-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Storage on Different Media

Filing cabinet Electronic
spreadsheet

Database

Storing Information

Every organization has some information needs. A library keeps a list of members, books, due
dates, and fines. A company needs to save information about employees, departments, and
salaries. These pieces of information are called data.

Organizations can store data on various media and in different formats: for example, a hard-copy
document in a filing cabinet or data stored in electronic spreadsheets or databases.

A database is an organized collection of information.

To manage databases, you need database management systems (DBMS). A DBMS is a program
that stores, retrieves, and modifies data in the database on request. There are four main types of
databases: hierarchical, network, relational, and object-oriented. Object relational databases are a
hybrid of object-oriented databases.

Note: Oracle7 is a relational database management system whereas Oracle8, 8i, and 9i are object
relational database management systems.

Oracle9i: SQL for End Users I- 6

Relational Database Concepts

The principles of the relational model were first outlined by Dr. E. F. Codd in a June 1970 paper called
“A Relational Model of Data for Large Shared Data Banks.” In this paper, Dr. Codd proposed the
relational model for database systems.

The more popular models used at that time were hierarchical and network, through simple flat file data
structures. Relational database management systems (RDBMS) soon became very popular, especially
for their ease of use and flexibility in structure. In addition, innovative vendors, such as Oracle,
supplemented the RDBMS with a suite of powerful application development and user products,
providing a total solution.

Components of the Relational Model
• Collections of objects or relations that store the data
• A set of operators that can act on the relations to produce other relations
• Data integrity for accuracy and consistency

For more information, see E. F. Codd, The Relational Model for Database Management.

I-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Relational Database Concepts

• Dr. E. F. Codd proposed the relational model for
database systems in 1970.

• The relational model consists of the following:
– Collection of objects or relations
– Set of operators to act on the relations
– Data integrity for accuracy and consistency

Oracle9i: SQL for End Users I- 7

I-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Models

Model of
the system in

the client’s
mind

Entity model
of the

client’s model
Table model

of the
entity model

Tables on disk

Oracle server

Data Models

Models are a cornerstone of design. Engineers build a model of a car to work out any details before
putting it into production. In the same manner, system designers develop models to explore ideas and
improve the understanding of the database design.

Purpose of Models

Models help communicate the concepts in people’s minds. They can be used to do the following:
• Communicate
• Categorize
• Describe
• Specify
• Investigate
• Evolve
• Analyze
• Imitate

The objective is to produce a model that fits a multitude of these uses, can be understood by an end user,
and contains sufficient detail for a developer to build a database system.

Oracle9i: SQL for End Users I- 8

Data Models (Continued)

Using some portion of the system as a basis, the developer draws up a blueprint of the system. This
blueprint is a major deliverable that will validate the design standards and analysis. Through blueprints,
users can evaluate the ability of systems to meet their needs. The blueprint is the entity model of the
system in the client’s mind. Every detail should be laid out. A lot of time is spent in this phase so that the
developer has a clear picture of the system before moving on to the next phase.

The next phase is the translation of the entity model to the table model. This phase involves the design of
the tables and columns along with the detailed specification of domains and check constraints on the
columns. The above database design translates to the actual tables and other database objects on the Oracle
server.

Oracle9i: SQL for End Users I- 9

I-9 Copyright © Oracle Corporation, 2001. All rights reserved.

The Employee and Department Data
Model

EMPLOYEES

DEPARTMENTS

EMPLOYEES and
DEPARTMENTS
tables on disk

Oracle server

Employee

An employee
Works in a

Department. Department

Creating the Employee and Department Data Model
Consider a system that involves employees and departments. An organization has a number of
employees and a number of departments that these employees work in. An employee works for a single
department, while a department can have many employees working in it. The steps to create the
employee and department data model is given below:

1. Create a mental model of the system. In this case, each employee works in a department, so the
system must store information about employees and departments entities.

2. Using the system model arrived at in step 1, create models of the employee and department.
Also, create a model of the “each employee works in a department” relationship that exists
between the employee and department entities.

3. Using the employee and department table models arrived at in step 2, design the EMPLOYEES
and DEPARTMENTS tables.

4. Using the table models arrived at in step 3, create the EMPLOYEES and DEPARTMENTS tables
on the Oracle Server and create the relationship between the two tables.

The Relationship Between the EMPLOYEES and DEPARTMENTS Tables

All employees must be assigned to a department. This means that every row in the EMPLOYEES table
must reference a row in the DEPARTMENTS table. However, there may be departments that do not
have employees assigned to them yet.

Oracle9i: SQL for End Users I- 10

I-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Definition of a Relational Database

A relational database is a collection of relations or
two-dimensional tables.

Oracle
server

Table Name: EMPLOYEES Table Name: DEPARTMENTS

… …

Definition of a Relational Database

A relational database uses relations or two-dimensional tables to store information.

For example, you might want to store information about all the employees in your company. In a
relational database, you store different pieces of information about your employees, such as employee
information, a department information, and a salary information.

.

Oracle9i: SQL for End Users I- 11

I-11 Copyright © Oracle Corporation, 2001. All rights reserved.

The EMPLOYEES Table

The EMPLOYEES table stores employee information

Table Name: EMPLOYEES

EMPLOYEE_ID: 102

LAST_NAME: De Haan

EMAIL: LDEHAAN

The EMPLOYEES Table

Each row in the EMPLOYEES table stores information about one employee. Each column stores a
particular piece of information about that employee.

For example, the third row in the EMPLOYEES table gives the following information:

Employee’s employee number: EMPLOYEE_ID = 102

Employee’s last name: LAST_NAME = De Haan

Employee’s email id: EMAIL = LDEHAAN

Oracle9i: SQL for End Users I- 12

I-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Relational Database Terminology

2

1

3

4

5

6

Terminology Used in a Relational Database
A relational database can contain one or more tables. A table is the basic storage structure of an
RDBMS. A table holds all the data necessary about something in the real world—for example,
employees, invoices, or customers.
The slide shows the contents of the EMPLOYEES table or relation. The numbers indicate the
following:

1. A single row or tuple representing all data required for a particular employee. Each row in a
table should be identified by a primary key, which allows no duplicate rows. The order of rows
is insignificant; specify the row order when the data is retrieved.

2. A column or attribute containing the employee number. The employee ID identifies a unique
employee in the EMPLOYEES table. In this example, the employee ID column is designated as
the primary key. A primary key must contain a value and the value must be unique.

3. A column that is not a key value. A column represents one kind of data in a table; in the
example, the salary of all the employees. Column order is insignificant when storing data;
specify the column order when the data is to be retrieved.

4. A field can be found at the intersection of a row and a column. There can be only one value in
it.

Oracle9i: SQL for End Users I- 13

Terminology Used in a Relational Database (Continued)

5. A column containing the department number, which is also a foreign key. A foreign key is a
column (or collection of columns) that defines how tables relate to each other. A foreign key
refers to a primary key or a unique key in the same table or in another table. In the example,
DEPARTMENT_ID uniquely identifies a department in the DEPARTMENTS table.

6. A field may have no value in it. This is called a null value. In the EMPLOYEES table, the
DEPARTMENT_ID for the employee Grant is NULL.

Oracle9i: SQL for End Users I- 14

I-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Relating Multiple Tables

• Each row of data in a table is uniquely identified by
a primary key (PK).

• You can logically relate data from multiple tables
using foreign keys (FK).

Table Name: EMPLOYEES
Table Name: DEPARTMENTS

Primary key Primary keyForeign key

…

Relating Multiple Tables
Each table contains data that describes exactly one entity. For example, the EMPLOYEES table
contains information about employees. Categories of data are listed across the top of each table, and
individual cases are listed below. Using a table format, you can readily visualize, understand, and use
information.

Because data about different entities is stored in different tables, you may need to combine two or
more tables to answer a particular question. For example, you may want to know the location of the
department where an employee works. In this scenario, you need information from the EMPLOYEES
table (which contains data about employees) and the DEPARTMENTS table (which contains
information about departments). An RDBMS enables you to relate the data in one table to the data in
another by using foreign keys. A foreign key is a column or a set of columns that refer to a primary
key in the same table or another table.

The ability to relate data in one table to data in another enables you to organize information in
separate, manageable units. Employee data can be kept logically distinct from department data by
storing it in a separate table.

Oracle9i: SQL for End Users I- 15

Relating Multiple Tables (Continued)

Guidelines for Primary Keys and Foreign Keys
• No duplicate values are allowed in a primary key.

• It is extremely unlikely that a primary key will be changed. A Primary key can be changed if no
foreign key is referencing it

• Foreign keys are based on data values and are purely logical, not physical, pointers.

• A foreign key value must match an existing primary key value or unique key value, or else be
null.

• A foreign key must reference either a primary key or unique key column.

Oracle9i: SQL for End Users I- 16

I-16 Copyright © Oracle Corporation, 2001. All rights reserved.

User tables Data
dictionary

Oracle Server

Oracle8: Object Relational
Database Management System

Evolution of the Oracle Server

The Oracle server has evolved from an RDBMS to an ORDBMS and is now designed to optimize
traditional, Internet and intranet applications, and to stimulate the emerging hosted application market
on the Internet.

Object-Relational Database

The Oracle8 Enterprise Edition has made a major leap in data management technology with the
introduction of an object-relational paradigm. Database schemas and applications today are becoming
increasingly complex. Often, several separate applications with similar data, such as customer
information, billing, and shipping, exist in different database schemas and an MIS department must
manage the interoperation. Corporate management of the information becomes a difficult task
involving the integration of different relational objects and different applications, possibly from
different vendors, into a more coherent end-user data model. By enhancing the relational database
with object extensions, Oracle addresses the need to simplify data modeling and extend the database
with new datatypes.

Oracle applications may run on the same computer as the Oracle8 Server. Alternatively, you can run
applications on a local system and run the Oracle8 Server on another system (client-server
architecture). This client-server environment provides a wide range of computing resources. For
example, a form-based airline reservation application can run on a client personal computer while
accessing flight data that is conveniently managed by an Oracle8 Server on a central computer.

Oracle9i: SQL for End Users I- 17

Oracle Internet Platform

Oracle8i offers a comprehensive high-performance Internet platform for e-commerce and data
warehousing. This integrated platform includes everything needed to develop, deploy, and manage
Internet applications. The Oracle Internet platform is built on three core pieces:

• Browser-based clients to process presentation
• Application servers to execute business logic and serve presentation logic to browser-based clients
• Databases to execute database-intensive business logic and serve data

Oracle offers a wide variety of the most advanced graphical user interface (GUI) driven development tools
to build business applications, as well as a large suite of software applications for many areas of business
and industry. Stored procedures, functions, and packages can be written by using SQL, PL/SQL, or Java.

I-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle8i: Internet Platform

Clients
S

ys
te

m
 m

an
ag

em
en

t

Network services

Databases
Application

servers

D
evelo

p
m

en
t to

o
ls

Internet applications

Presentation and
business logic

Business logic
and data

Any browser Any FTP client
Any mail
client

SQL

PL/SQL

Java

Oracle9i: SQL for End Users I- 18

I-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i

Scalability

Reliability

Single Dev.
Model

Common
Skill Sets

One Mgmt
Interface

One
Vendor

Oracle9i Features

Oracle offers a comprehensive high-performance infrastructure for e-business. It is called Oracle9i.
Oracle9i includes everything needed to develop, deploy, and manage Internet applications.

Benefits include:
• Scalability from departments to enterprise e-business sites
• Robust, reliable, available, secure architecture
• One development model, easy deployment options
• Leverage an organization’s current skillset throughout the Oracle platform (including SQL,

PL/SQL, Java, and XML)
• One management interface for all applications
• Industry standard technologies, no proprietary lock-in

Oracle9i: SQL for End Users I- 19

I-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i

Oracle9i

There are two products, Oracle9i Application Server and Oracle9i Database, that provide a complete and
simple infrastructure for Internet applications.

Oracle9i: SQL for End Users I- 20

I-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i Application Server

Business IntelligenceBusiness intelligence

Transactional AppsTransactional Apps

PortalsPortals

A
P
A
C
H
E

IntegrationIntegration

Oracle9i Application Server

The Oracle9i Application Server (Oracle9iAS) runs all your applications. The Oracle9i Database stores
all your data.

Oracle9i Application Server is the only application server to include services for all the different server
applications you will want to run. Oracle9iAS can run your:

• Portals or Web sites
• Java transactional applications
• Business intelligence applications

It also provides integration between users, applications, and data throughout your organization.

Oracle9i: SQL for End Users I- 21

I-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i Database

MultimediaMultimedia

Object Relational DataObject Relational Data

MessagesMessages

Documents

XML

Documents

XML

Oracle9i Database

The roles of the two products are very straightforward. Oracle9i Database manages all your data. This is
not just the object relational data that you expect an enterprise database to manage. It can also be
unstructured data like:

• Spreadsheets
• Word documents
• PowerPoint presentations
• XML
• Multimedia data types like MP3, graphics, video, and more

The data does not even have to be in the database. Oracle9i Database has services through which you
can store metadata about information stored in file systems. You can use the database server to manage
and serve information wherever it is located.

Oracle9i: SQL for End Users I- 22

I-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Communicating with the RDBMS
Using SQL

SELECT department_name
FROM departments;

A SQL statement
is entered

Data is displayed

The statement is
sent to Oracle

Server

Oracle Server

Structured Query Language

Structured Query Language (SQL) is the set of statements using which all programs and users
access data in an Oracle database. In some application programs, you may access the database
without directly writing SQL or PL/SQL commands. But these applications in turn must use SQL
when executing the user’s request.

Dr. E. F. Codd published the paper, “A Relational Model of Data for Large Shared Data Banks,”
in June 1970 in the Association of Computer Machinery (ACM) journal, Communications of the
ACM. Codd's model is now accepted as the definitive model for relational database management
systems (RDBMS). The language, Structured English Query Language ("SEQUEL") was
developed by IBM Corporation, Inc., to use Codd's model. SEQUEL later became SQL (still
pronounced “sequel”). In 1979, Relational Software, Inc. (now Oracle Corporation) introduced the
first commercially available implementation of SQL. Today, SQL is accepted as the standard
RDBMS language.

Oracle9i: SQL for End Users I- 23

Structured Query Language (Continued)

How Does SQL Work?

The strengths of SQL provide benefits for all types of users, including application programmers,
database administrators, managers, and end users. Technically speaking, SQL is a data sublanguage.
The purpose of SQL is to provide an interface to a relational database, such as Oracle, and all SQL
statements are instructions to the database. In this, SQL differs from general-purpose programming
languages like C and BASIC. The features of SQL are listed below:

• It processes sets of data as groups rather than as individual units.

• It provides automatic navigation to the data.

• It uses statements that are complex and powerful individually, which therefore stand alone.

Oracle9i: SQL for End Users I- 24

I-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Types Supported in SQL

• CHAR(size)

• VARCHAR2(size)

• LONG

• NUMBER(p,s)

• DATE

• TIMESTAMP

• RAW(size)

• LONG RAW

• CLOB

• BLOB

Data Types Supported in SQL

Each literal or column value manipulated by Oracle has a data type. A value’s data type associates a
fixed set of properties with it. These properties cause Oracle to treat values of one data type
differently from the values of another.

The table on the following page summarizes the Oracle internal data types.

Oracle9i: SQL for End Users I- 25

Data Types Description

CHAR(size) Used to store fixed length character data of
length size.
Maximum size is 2000 bytes.
Default size is 1 byte.

VARCHAR2(size) Used to store a variable-length character string
having maximum length size bytes. Maximum
size is 4000 bytes.

LONG Used to store variable-length character data up to
2 GB.

NUMBER(p,s) Used to store a number having a precision p and
scale s.
p is the number of significant digits and s is the
scale. p is a positive number up to 38 and s can
vary from -84 to 127. p is the total length of
numbers excluding the decimal and s is the
maximum number of digits after the decimal.
The decimal does not take up a space.

DATE Used to store dates. Valid dates range from
01/01/4712 BC to 31/12/9999 AD. Both date and
time are stored.

TIMESTAMP
(fractional_seconds
_precision)

Year, month, and day values of date, as well as
hour, minute, and second values of time, where
fractional_seconds_precision is the
number of digits in the fractional part of the
SECOND datetime field. Accepted values of
fractional_seconds_precision are 0
to 9. The default is 6.

RAW(size) Used to store raw binary data of length size
bytes. Maximum size is 2000 bytes.

LONG RAW Used to store raw binary data of variable length
up to 2 GB.

CLOB Character data up to 4 gigabytes

BLOB Binary data up to 4 gigabytes

Data Types Supported in SQL (continued)

Oracle9i: SQL for End Users I- 26

I-26 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Statements
SELECT

INSERT
UPDATE
DELETE
MERGE

CREATE
ALTER
DROP
RENAME
TRUNCATE

COMMIT
ROLLBACK
SAVEPOINT

GRANT
REVOKE

Data retrieval

Data manipulation language (DML)

Data definition language (DDL)

Transaction control

Data control language (DCL)

SQL Statements

Oracle SQL complies with industry-accepted standards. Oracle Corporation ensures future compliance
with evolving standards by actively involving key personnel in SQL standards committees. Industry-
accepted committees are the American National Standards Institute (ANSI) and the International
Standards Organization (ISO). Both ANSI and ISO have accepted SQL as the standard language for
relational databases.

Oracle9i: SQL for End Users I- 27

SQL Statements (continued)

Statement Description

SELECT Retrieves data from the database

INSERT
UPDATE
DELETE
MERGE

Enters new rows, changes existing rows, and removes unwanted rows
from tables in the database, respectively. Collectively known as data
manipulation language (DML). Use the MERGE statement to select rows
from one table for update or insertion into another table. The decision
whether to update or insert into the target table is based on a condition
in the ON clause. MERGE is covered in detail in appendix A

CREATE
ALTER
DROP
RENAME
TRUNCATE

Sets up, changes, and removes data structures from tables. Collectively
known as data definition language (DDL).

COMMIT
ROLLBACK
SAVEPOINT

Manages the changes made by DML statements. Changes to the data can
be grouped together into logical transactions.

GRANT
REVOKE

Gives or removes access rights to both the Oracle database and the
structures within it. Collectively known as data control language
(DCL).

Oracle9i: SQL for End Users I- 28

I-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of Course Material

SELECT

RESTRICTED SELECT

FUNCTIONS

JOINS

SUBQUERIES

iSQL * PLUS

Course Material Overview

This course has an Introduction and a total of eight lessons that cover the following subjects:
• SELECT statements
• Restricted SELECT statements
• Functions (single row functions, data conversion functions, and group functions)
• Joins
• Subqueries
• iSQL*Plus

Each lesson begins with a statement of the objectives, and Lessons 1 through 8 end with practice
exercises.

This course focuses on the relational aspects of Oracle database management systems. In particular, it
focuses on the data retrieval language statements. It does not cover user-defined datatypes, or objects.
iSQL*Plus will be used in the practices to enter and execute SQL statements.

Oracle9i: SQL for End Users I- 29

I-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Tables Used in the Course
EMPLOYEES

DEPARTMENTS JOB_GRADES

Tables Used in the Course

The following main tables will be used in this course:
• EMPLOYEES table, which gives details of all the employees
• DEPARTMENTS table, which gives details of all the departments
• JOB_GRADES table, which gives details of salaries for various grades

Note: The structure and data for all the tables is provided in Appendix D.

Oracle9i: SQL for End Users I- 30

I-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
• Relational databases are:

– Composed of relations
– Managed by relational operations
– Governed by data integrity constraints

• Oracle8 is based on the object relational database
management system.

• The Oracle8i server introduced a comprehensive
high-performance Internet platform for e-commerce
and data warehousing.

• The Oracle9i Server includes two components that
provide a complete and simple infrastructure for
Internet applications.

• You store and manage information in an Oracle
server by using the SQL language.

Summary

Relational database management systems are composed of objects and relations. They are managed
by operations and governed by data integrity constraints.

Oracle8i offers a comprehensive high-performance Internet platform for e-commerce and data
warehousing.

Oracle9i is designed to optimize traditional, internet and intranet applications, and to stimulate the
emerging hosted application market on the internet. Oracle9i components include the following:

• Oracle9i Database
• Oracle9i Application Server

SQL is the language you use to communicate with the server to access, manipulate, and control data.

Copyright © Oracle Corporation, 2001. All rights reserved.

Writing Basic
SELECT SQL Statements

Oracle9i: SQL for End Users 1- 2

Lesson Aim
To extract data from the database you need to use the structured query language (SQL) SELECT
statement. You may need to restrict the columns that are displayed. This lesson describes all the SQL
statements that you need to perform these actions. This lesson also covers the use of iSQL*Plus
commands to execute SQL statements.

1-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• List the capabilities of SQL SELECT statements
• Execute a basic SELECT statement

• Differentiate between SQL statements and
iSQL*Plus commands

Oracle9i: SQL for End Users 1- 3

1-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Capabilities of SQL SELECT Statements

SelectionProjection

Table 1 Table 2

Table 1 Table 1
Join

Using SQL SELECT Statements

A SELECT statement retrieves information from the database. You can use a SELECT statement
to do the following:

• Projection: Choose the columns in a table that you want the query to return. You can choose
as few or as many columns of the table as you require.

• Selection: Choose the rows in a table that you want the query to return. You can use various
criteria to restrict the rows that you see.

• Join: Bring together data stored in different tables by creating a link through a column that
appears in both tables.

You will learn more about selections and joins in a later lesson.

Oracle9i: SQL for End Users 1- 4

Contents of a Basic SELECT Statement

In its simplest form, a SELECT statement must include the following:
• A SELECT clause, which specifies the columns to be displayed
• A FROM clause, which specifies the table that contains the columns listed in the SELECT

clause

In the syntax:

SELECT Displays a list of one or more columns
DISTINCT Suppresses duplicate rows and lists columns in ascending order
* Selects all columns
column Selects the named column
alias Gives selected column a different heading
FROM table Specifies the table that contains the columns

1-4 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT [DISTINCT] {*|column|expression [alias],...}
FROM table
[WHERE condition(s)]
[GROUP BY group_by_expression]
[ORDER BY column];

Basic SELECT Statement

• SELECT identifies the columns to be displayed.
• FROM identifies the table that contains the columns.

Oracle9i: SQL for End Users 1- 5

Contents of a Basic SELECT Statement (Continued)

WHERE Restricts the query result to rows that meet a condition

conditions Composed of column names, expressions, constants,
and a comparison operator

GROUP BY Divides the rows in a table into groups

group_by_expression Specifies columns whose values determine the basis
for grouping rows

ORDER BY Sorts the rows in the output

Note: The words keyword, clause, and statement are used throughout this course:

• A keyword refers to an individual SQL element.
For example, SELECT and FROM are keywords.

• A clause is a part of a SQL statement.
For example, SELECT employee_id, last_name is a clause.

• A statement is a combination of two or more clauses.
For example, SELECT * FROM EMPLOYEES is a SQL statement.

Oracle9i: SQL for End Users 1- 6

Writing SQL Statements

To construct valid SQL statements that are both easy to read and edit, follow these simple rules and
guidelines:

• SQL statements are not case sensitive.
• You can enter SQL statements on one or more lines.
• You cannot abbreviate or split keywords across lines.
• Place clauses on separate lines for readability and ease of editing.
• Use tabs and indents to make code more readable.
• Enter keywords in uppercase. Enter all other words, such as table names and columns, in

lowercase. This enhances readability.

1-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Writing SQL Statements

• SQL statements are not case sensitive.
• SQL statements can be on one or

more lines.
• Keywords cannot be abbreviated or split across

lines.
• Clauses are usually placed on separate lines.
• Tabs and indents are used to enhance readability.

Oracle9i: SQL for End Users 1- 7

1-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving All Columns
from a Table

Retrieve all
columns from the
DEPARTMENTS table

DEPARTMENTS TABLE

DEPARTMENTS TABLE

Retrieving All Columns
Assume that you want to display all of the columns of information stored in the DEPARTMENTS
table. This is the simplest use of the SELECT statement in SQL. All rows are retrieved from the
table and all columns are displayed. This is the equivalent of retrieving the entire contents of a
table. In the case of the DEPARTMENTS table, the “entire contents of the table” translates to all
details of all departments.

Oracle9i: SQL for End Users 1- 8

1-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting All Columns

SELECT *
FROM departments;

Selecting All Columns, All Rows
You can display all columns of data in a table by following the SELECT keyword with an asterisk
(*). In the example on the slide, the DEPARTMENTS table contains four columns:
DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, and LOCATION_ID. The table
contains eight rows, one for each department.

You can also display all columns in the table by listing all the columns after the SELECT
keyword.

To display all columns in the JOB_GRADES table, enter the following command.

SELECT grade_level, lowest_sal, highest_sal

FROM job_grades;

You can also use the * character to display all columns in the JOB_GRADES table.

SELECT *

FROM job_grades;

Oracle9i: SQL for End Users 1- 9

1-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Projection on a Table

Retrieve DEPARTMENT_ID and
DEPARTMENT_NAME columns from
the DEPARTMENTS table

Only two columns are displayed

DEPARTMENTS TABLE

DEPARTMENTS TABLE

Retrieving Specific Columns
Assume that you want to display only two columns of data stored in the DEPARTMENTS table. This
“projection” is a typical use of the SELECT statement in SQL. You can use the projection on the
DEPARTMENTS table to select only certain details about each employee, in this case, the department
number and the location of each department.

To display the DEPARTMENT_ID and LOCATION_ID columns from the DEPARTMENTS table enter
the following command:

Basic Projection Rules
• Use an asterisk (*) to display all columns.
• You can select as many columns as you want.
• Use a comma to separate the column names.
• The columns appear in the order selected.

SELECT department_id, location_id

FROM departments;

Oracle9i: SQL for End Users 1- 10

1-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting Specific Columns

SELECT department_id, department_name
FROM departments;

Selecting Specific Columns, All Rows
You can use the SELECT statement to display specific columns of the table by specifying the
column names, separated by commas. The example in the slide displays all the department
numbers and department names from the DEPARTMENTS table.

In the SELECT clause, specify the columns in the order in which you want them to appear in the
output. For example, to display department name before department ID, use the following
statement:

SELECT department_name,department_id

FROM employees;

Oracle9i: SQL for End Users 1- 11

Selecting Specific Columns, All Rows (Continued)

Oracle9i: SQL for End Users 1- 12

1-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Default Data Justification

EMPLOYEES table

Character
left justified

Date
left justified

Number
right justified

Default Data Justification

• Character and date data are left justified.

• Number data are right justified.

• By default, the results of queries display column headings in uppercase.

• You can override the column heading display with an alias. Column aliases are covered later
in this lesson.

• Use the SELECT statement given below to display the last name, hire date and salary of the
employees. The results are as displayed in the slide.

SELECT last_name,hire_date,salary

FROM employees;

Oracle9i: SQL for End Users 1- 13

Using Arithmetic Expressions

You may need to modify the way in which data is displayed, perform calculations, or look at what-if
scenarios. You can do so by using arithmetic expressions. An arithmetic expression may contain column
names, constant numeric values, and the arithmetic operators.

The table in the slide lists the arithmetic operators available in SQL. You can use arithmetic operators in
any clause of a SQL statement except the FROM clause.

1-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Arithmetic Expressions

Create expressions on NUMBER and DATE data types
by using arithmetic operators.

Operator

+

-

*

/

Description

Add

Subtract

Multiply

Divide

Oracle9i: SQL for End Users 1- 14

1-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Arithmetic Operators

SELECT last_name, salary, salary+300
FROM employees;

…

Using Arithmetic Operators

The example in the slide uses the addition operator to calculate a salary increase of $300 for all
employees and displays a new column, SALARY+300 in the output.

Note that the calculated column, SALARY+300, is not a new column in the EMPLOYEES table; it
is for display only. By default, the name of the new column comes from the calculation that
generated it: in this case, SALARY+300.

Note: SQL ignores blank spaces before and after the arithmetic operator.

Oracle9i: SQL for End Users 1- 15

1-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Arithmetic Operators on Multiple
Columns

SELECT last_name,department_id, salary,
salary * commission_pct

FROM employees;

…

…

Using Arithmetic Operators on Multiple Columns
The example in the slide multiplies the value in the SALARY column with the value in the
COMMISSION_PCT column for each row in the EMPLOYEES table.

Oracle9i: SQL for End Users 1- 16

Operator Precedence

If an arithmetic expression contains more than one operator, multiplication and division are evaluated
first. If operators within an expression have the same priority, evaluation is done from left to right.

Expressions within parentheses are evaluated first, so you can use parentheses to change precedence.

1-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Operator Precedence

• Multiplication and division take priority over
addition and subtraction.

• Operators of the same priority are evaluated from
left to right.

• Parentheses are used to force prioritized evaluation
and to clarify statements.

* / + _

Oracle9i: SQL for End Users 1- 17

1-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Operator Precedence

SELECT last_name, salary, 100+salary*12
FROM employees;

…

Operator Precedence (Continued)

The example in the slide displays the name, salary, and annual compensation of employees.

The example calculates the annual compensation as 12 multiplied by the monthly salary, plus a
one-time bonus of $100 because multiplication has a higher order of precedence than addition.
Observe the output that shows multiplication was done before the addition and not from left to
right.

Note: Use parentheses to reinforce the standard order of precedence and improve clarity. For
example, the expression in the slide can be written as 100+(12*SALARY) with no change in the
result.

Oracle9i: SQL for End Users 1- 18

1-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Parentheses

SELECT last_name, salary, (100+salary)*12
FROM employees;

…

Using Parentheses to Override Operator Precedence

You can override the rules of precedence by using parentheses to specify the order in which operators
are executed.

The example in the slide displays the name, salary, and annual compensation of employees. It
calculates the annual compensation as monthly salary plus a monthly bonus of $100, multiplied by
12. Expressions in parentheses are evaluated first; therefore the addition takes priority over the
multiplication.

Oracle9i: SQL for End Users 1- 19

1-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining a Column Alias

• Renames a column heading
• Is useful with calculations
• Immediately follows the column name or expression
• Include the optional AS keyword between the

column name and the alias
• Requires double quotation marks if it is case

sensitive or contains spaces or special characters

Column Aliases

When displaying the result of a query, iSQL*Plus normally uses the name of the selected column as the
column heading. In many cases, this heading is not descriptive and thus is difficult to understand. You can
change a column heading by using a column alias.

Specify the alias after the column or expression in the SELECT list using a space as the separator or
following the keyword AS. By default, alias headings appear in uppercase. If the alias is case sensitive or if
it contains spaces or special characters such as # or $, enclose it in double quotation marks (“ ”). Column
aliases can contain spaces and special characters such as # and $.

Oracle9i: SQL for End Users 1- 20

1-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Column Aliases

SELECT last_name "Name",

salary*12 "Annual Salary"
FROM employees;

…

Using Column Aliases (Continued)
The example displays the name and annual salary of all the employees. Because “Annual
Salary” contains spaces, it has been enclosed in double quotation marks. Notice that the column
heading in the output are exactly the same as the column alias.

Oracle9i: SQL for End Users 1- 21

The Concatenation Operator

You can link columns to other columns, arithmetic expressions, or constant values to create a character
expression, by using the concatenation operator ||. Columns on either side of the operator are
combined to make a single output column.

1-21 Copyright © Oracle Corporation, 2001. All rights reserved.

The Concatenation Operator

• Concatenates columns or character strings to other
columns

• Is represented by two vertical bars ||
• Creates a result column that is a character

expression

Oracle9i: SQL for End Users 1- 22

1-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the Concatenation Operator

SELECT first_name || last_name AS "Names"
FROM employees;

…

Using the Concatenation Operator
In the example, FIRST_NAME and LAST_NAME are concatenated and given the alias “Names.”
Notice that the first name and last name are combined to make a single output column.

Oracle9i: SQL for End Users 1- 23

Literals

The terms literal and constant value are synonymous and refer to a fixed data value. For example,
’JACK’, ’BLUE ISLAND’, and ’101’ are all character literals; 5001 is a numeric literal. Note that
character literals are enclosed in single quotation marks (’ ’), which enable Oracle to distinguish them
from schema object names. Number literals should not be enclosed in single quotation marks.

Many SQL statements and functions require you to specify character and numeric literal values. You
can also specify literals as part of expressions and conditions.

1-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Literals

• A literal is a constant value of character,
expression, or number that can be included in the
SELECT list.

• Date and character literal values must be enclosed
in single quotation marks.

• Each character string is displayed once for each
row returned.

Oracle9i: SQL for End Users 1- 24

1-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Literal Character Strings

SELECT last_name ||’ is a ’|| job_id
AS "Employee Details"

FROM employees;

…

Using Literal Character Strings

The example in the slide displays the names and jobs of all employees. The column has the
heading “Employee Details”. Notice the space between the single quotation marks in the SELECT
statement. The spaces improve the readability of the output.

In the following example the name and salary of each employee is concatenated with a literal to
give the returned rows more meaning:

SELECT last_name ||’: 1 Month salary = ’||salary MONTHLY

FROM employees;

…

Oracle9i: SQL for End Users 1- 25

1-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Duplicate Rows

The default display of queries is all rows, including
duplicate rows.

SELECT department_id
FROM employees;

…

Duplicate Rows

Unless you indicate otherwise, iSQL*Plus displays the results of a query without eliminating
duplicate rows. The example in the slide displays all the department numbers from the
EMPLOYEES table. Notice that some department numbers are repeated.

Oracle9i: SQL for End Users 1- 26

1-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Eliminating Duplicate Rows

Eliminate duplicate rows by using the DISTINCT
keyword in the SELECT clause.

SELECT DISTINCT department_id
FROM employees;

Eliminating Duplicate Rows
To eliminate duplicate rows in the result, include the DISTINCT keyword in the SELECT clause
immediately after the SELECT keyword. In the example in the slide, the EMPLOYEES table
actually contains 20 rows but there are only eight distinct department numbers in the table. You
can specify multiple columns after the DISTINCT qualifier. The DISTINCT qualifier affects all
the selected columns, and the result represents a distinct combination of the columns.

SELECT DISTINCT department_id, job_id

FROM employees;

…

Oracle9i: SQL for End Users 1- 27

1-27 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL and iSQL*Plus Interaction

Oracle server

Query resultsiSQL*Plus
commands

Client

Formatted report

Internet
Browser

iSQL*Plus

SQL and iSQL*Plus

SQL is a command language for communication with the Oracle Server from any tool or
application.

iSQL*Plus is an Oracle tool that recognizes and submits SQL statements to the Oracle Server for
execution and contains its own command language.

Features of SQL

• Can be used by a range of users, including those with little or no programming experience

• Is a nonprocedural language

• Reduces the amount of time required for creating and maintaining systems

• Is an English-like language

Features of iSQL*Plus

• Can be accessed from a browser

• Accepts ad hoc entry of statements

• Provides online editing for modifying SQL statements

• Controls environmental settings

• Formats query results into a basic report

• Accesses local and remote databases

Oracle9i: SQL for End Users 1- 28

SQL and iSQL*Plus (Continued)

The following table compares SQL and iSQL*Plus:

1-28 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Statements Versus
iSQL*Plus Commands

SQL
statements

SQL
• A language
• ANSI standard
• Keywords cannot be

abbreviated
• Statements manipulate

data and table definitions
in the database

iSQL*Plus
• An environment
• An Oracle proprietary tool
• Keywords can be

abbreviated
• Commands do not allow

manipulation of values in
the database

• Runs on a browser
• Centrally loaded, does not

have to be implemented
on each machine

iSQL*Plus
commands

SQL
buffer SQL*Plus

buffer

SQL iSQL*Plus

Is a language for communicating with the Oracle
server to access data

Recognizes SQL statements and sends them to
the server

Is based on American National Standards
Institute (ANSI) standard SQL

Is the Oracle proprietary interface for executing
SQL statements

Manipulates data and table definitions in the
database

Does not allow manipulation of values in the
database

Does not have a continuation character Has a dash (-) as a continuation character if the
command is longer than one line

Cannot be abbreviated Can be abbreviated

Uses a termination character (;) to execute
commands immediately

Does not require termination characters;
executes commands immediately
Note: If more than one SQL statements are
being executed simultaneously, then each SQL
statement must be terminated by a ; symbol.

Uses functions to perform some formatting Uses commands to format data

Oracle9i: SQL for End Users 1- 29

iSQL*Plus

iSQL*Plus is an environment in which you can do the following:
• Execute SQL statements to retrieve, modify, add, and remove data from the database
• Format, perform calculations on, store, and print query results in the form of reports
• Create script files to store SQL statements for repetitive use.

iSQL*Plus commands can be divided into the following main categories:

1-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of iSQL*Plus

After you log in to iSQL*Plus, you can:
• Describe the table structure
• Edit your SQL statement
• Execute SQL from iSQL*Plus
• Save SQL statements to files and append SQL

statements to files
• Execute statements stored in saved files
• Load commands from a text file into the iSQL*Plus

window

Category Purpose

Environment Affects the general behavior of SQL statements for the session

Format Formats query results

File manipulation Saves statements into text script files, and run statements from text
script files

Execution Sends SQL statements from the browser to the Oracle server

Edit Modifies SQL statements in the Edit window

Interaction Allows to create and pass variables to SQL statements, print variable
values, and print messages to the screen

Miscellaneous Has various commands to connect to the database, manipulate the
iSQL*Plus environment, and display column definitions

Oracle9i: SQL for End Users 1- 30

1-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Logging On to iSQL*Plus

From your Windows browser environment

Logging On to iSQL*Plus

To log on through a browser environment:
1.Start the browser.
2.Enter the URL address of the iSQL*Plus environment.
3.Fill in the username, password, and Oracle Connection Identifier fields.
4.The Privilege dropdown list has three options:

• User--is the default connection. iSQL*Plus connects to the specified database with no
administrator privileges.

• AS SYSDBA--connects to the specified database with SYSDBA privileges.
• AS SYSOPER--connects to the specified database with SYSOPER privileges.

To connect with either SYSDBA or SYSOPER privileges, your username and password must be added to
the Oracle HTTP Server authentication file.

After you have successfully logged on to iSQL*Plus, you see the following screen:

Oracle9i: SQL for End Users 1- 31

Logging On to iSQL*Plus (Continued)

Oracle9i: SQL for End Users 1- 32

1-32 Copyright © Oracle Corporation, 2001. All rights reserved.

The iSQL*Plus Environment

3 4 5

9 1011

2

1

6

7 8

The iSQL*Plus Environment

Within the Windows browser, the iSQL*Plus window has several key areas:

1. Edit window: The area where you type the SQL statements and iSQL*Plus commands.

2. Execute button: Click to execute the statements and commands in the Edit window.

3. Output option: Defaults to Work Screen, which displays the results of the SQL statement beneath
the edit window. The other options are File or Window. File saves the contents to a specified file.
Window places the output to the screen, but in a separate window.

4. Clear Screen button: Click to clear text from the edit window.

5. Save Script button: Saves the contents of the edit window to a file.

6. Script Location: Identifies the name and location of the script file that you want to execute.

7. Browse button: Allows you to search for a script file using the Windows File upload dialog box.

8. Load script: Click the Load Script button to load the script specified in the Script location: field into
the iSQL*Plus input area for editing or execution.

9. Log out icon: Click to end the iSQL*Plus session and return to the iSQL*Plus log in screen.

10. Help icon: Provides access to iSQL*Plus Help documentation.

11. Password icon: Allows you to change your password.

Oracle9i: SQL for End Users 1- 33

1-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with Script Files

SELECT last_name, hire_date, salary
FROM employees; 1

2

Interacting with Script Files

Placing Statements and Commands into a Text Script File

You can save commands and statements from the window in iSQL*Plus to a text script file as

follows:

1. Type the SQL statement(s) into the Edit window in iSQL*Plus.
2. Click the Save Script button. This brings up the Windows File Save As dialog box. Identify the

name of the file. It defaults to a .html extension. You can change the file type to a text file or
save it as a .sql file. The Windows File Save As dialog box is shown in the next page.

Oracle9i: SQL for End Users 1- 34

Interacting with Script Files (Continued)

Oracle9i: SQL for End Users 1- 35

1-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with Script Files

D:\temp\emp_sql.html

SELECT last_name, hire_date, salary
FROM employees;

2

1

3

Interacting with Script Files
Using Statements and Commands from a Script File in iSQL*Plus
You can use previously saved commands and statements from a script file in iSQL*Plus as
follows:

1. Type in the script name and location. Or, you can click the Browse button to find the script
name and location.

2. Click the Load Script button. The file contents are loaded into the iSQL*Plus edit
window.

3. Click the Execute button to run the contents of the iSQL*Plus edit window.

Oracle9i: SQL for End Users 1- 36

1-36 Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with Script Files

DESCRIBE employees
SELECT first_name, last_name, job_id
FROM employees;

1

23

Interacting with Script Files
Saving Output to a File

You can save the results generated from a SQL statement or iSQL*Plus command to a file:

• Type the SQL statement(s) and iSQL*Plus command(s) into the edit window in iSQL*Plus .

• Change the Output option to File.

• Click the Execute button to run the contents of the iSQL*Plus edit window. This brings up the
File Save As dialog box. Specify the desired file name. It defaults to a .html extension.

You can change the file type. The results are sent to a file with the specified name.

Oracle9i: SQL for End Users 1- 37

1-37 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Table Structure

Use the iSQL*Plus DESCRIBE command to display
the structure of a table.

DESC[RIBE] tablename

Displaying the Table Structure
In iSQL*Plus, you can display the structure of a table using the DESCRIBE command. The command
shows the column names and data types, as well as whether a column must necessarily contain data.

In the syntax:

tablename is the name of any existing table, view, or synonym accessible to the user

Note: As mentioned before, iSQL*Plus command words can be abbreviated, but must contain at least the
first four characters. This is why the characters ’RIBE’ of DESCRIBE are shown as optional.

Oracle9i: SQL for End Users 1- 38

1-38 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Table Structure

DESCRIBE employees

Displaying the Table Structure (Continued)
The example on the slide displays the information about the structure of the EMPLOYEES table.

In the result:

Null? indicates whether a column must contain data; NOT NULL indicates that a
column must contain data.

Type displays the data type for a column.

The data types are described in the following table:

Data Type Description

NUMBER(p,s)

Number value having a maximum number of digits p, with s digits
to the right of the decimal point

VARCHAR2(s) Variable-length character value of maximum size s

DATE Date and time value between January 1, 4712 B.C., and December
31, 9999 A.D.

Oracle9i: SQL for End Users 1- 39

1-39 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Use iSQL*Plus as an environment to:
• Retrieve data from a database table with the
SELECT statement

• Execute SQL statements
• Edit SQL statements

SELECT [DISTINCT] {*, column|expression [alias],...}
FROM table
[WHERE condition(s)]
[GROUP BY group_by_expression]
[ORDER BY column];

SELECT Statement

In this lesson, you have learned about retrieving data from a database table with the SELECT statement.

iSQL*Plus

iSQL*Plus is an execution environment that you can use to send SQL commands to the database server
and to edit and save SQL commands. You can execute commands from the SQL prompt or from a script
file.

SELECT [DISTINCT] {*,column[alias],...}
FROM table;

 SELECT Displays a list of at least one column
 DISTINCT Suppresses duplicates
 * Selects all columns
 column Selects the named column
 alias

Gives selected columns different headings

 FROM table Specifies that the table contains the columns

Oracle9i: SQL for End Users 1- 40

1-40 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 1 Overview

This practice covers the following topics:
• Selecting all data from different tables
• Describing the structure of tables
• Performing arithmetic calculations
• Specifying column names

Practice 1 Overview

This is the first of many practices. The solutions (if you require them) can be found in
Appendix C, “Practice Solutions.” Practices are intended to introduce all topics covered in the lesson.
Questions 2 through 4 are paper-based.

Some practices contain “if you want extra challenge” questions. Do these only if you have completed
all of the other questions within the allocated time and would like a further challenge to your skills.

Take the practices slowly and precisely. You can experiment with saving and running command files.
If you have any questions ask your instructor.

Oracle9i: SQL for End Users 1- 41

Practice 1

1. Initiate an iSQL*Plus session by using the user ID and password provided by the instructor.

2. SQL commands are always held in the buffer.

True/False

3. iSQL*Plus commands are used to query data.

True/False

4. Show the structure of the DEPARTMENTS table.

5. Select all information from the DEPARTMENTS table.

Oracle9i: SQL for End Users 1- 42

Practice 1 (Continued)
6. Show the structure of the EMPLOYEES table.

Oracle9i: SQL for End Users 1- 43

Practice 1 (Continued)
7. Display the last name and hire date for each employee.

Oracle9i: SQL for End Users 1- 44

Practice 1 (Continued)

8. Display the hire date and last name for each employee, with the hire date appearing first.

Oracle9i: SQL for End Users 1- 45

Practice 1 (Continued)

9. Display the last name, hire date, and annual salary, excluding commission, for each employee.
Label the annual salary column as ANNUAL.

Oracle9i: SQL for End Users 1- 46

Practice 1 (Continued)

If you want an extra challenge, try the following exercises:

10. List all the specific job ids that exist in the organization.

Oracle9i: SQL for End Users 1- 47

Practice 1 (Continued)

11. Select the last name, department id, and hire date for all employees. Display the data as shown:

Oracle9i: SQL for End Users 1- 48

Copyright © Oracle Corporation, 2001. All rights reserved.

Restricting and Sorting Data

Oracle9i: SQL for End Users 2- 2

Lesson Aim

While retrieving data from the database, you may need to restrict the rows of data that are displayed or
specify the order in which the rows are displayed. This lesson explains the SQL statements that you use
to perform these actions.

2-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Limit the rows retrieved by a query
• Sort the rows retrieved by a query

Oracle9i: SQL for End Users 2- 3

2-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Limiting Rows by Using a Restriction

EMPLOYEES TABLE

Retrieve all
employees
in department 90

EMPLOYEES TABLE

Limiting Rows

The example in the slide displays all the employees in department 90. The set of rows with a value
of 90 in the DEPARTMENT_ID column are the only ones returned. This method of restriction is
the basis of the WHERE clause in SQL.

Oracle9i: SQL for End Users 2- 4

2-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Limiting the Rows Selected by a Query

• Restrict the rows returned by using the WHERE
clause.

• The WHERE clause follows the FROM clause.

SELECT [DISTINCT] {*, column|expression [alias],...}
FROM table
WHERE condition(s)
[GROUP BY group_by_expression]
[ORDER BY column];

Limiting the Rows Selected by a Query
You use a WHERE clause to restrict the rows returned by a query. A WHERE clause contains a
condition that must be met, and it directly follows the FROM clause.

In the syntax:

WHERE Restricts the query to rows that meet a condition

condition Is composed of a comparison operator placed between
column names, expressions or constants

The WHERE clause can compare values in columns, literal values, arithmetic expressions, or
functions. The WHERE clause consists of three elements:

• Column name

• Comparison operator

• Column name, constant, or list of values

Oracle9i: SQL for End Users 2- 5

2-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the WHERE Clause

SELECT last_name, job_id, department_id
FROM employees
WHERE department_id = 90 ;

Using the WHERE Clause

In the example, the SELECT statement retrieves the last name, job ID, and department ID of all
employees who work in department 90. Both the DEPARTMENT_ID column and the number 90
are of numeric data type. Data types must match when you are using comparison operators.

You can also restrict restrict the rows returned by a query by columns that are not included in the
SELECT clause. The example below restricts the output by the DEPARTMENT_ID column.
Observe that this column is not included in the SELECT statement.

SELECT last_name, job_id

FROM employees

WHERE department_id=90;

Oracle9i: SQL for End Users 2- 6

Character Strings and Dates
Character strings and dates in the WHERE clause must be enclosed in single quotation marks

(’ ’). Number constants, however, should not be enclosed in single quotation marks. All character and
date searches are case sensitive.

SELECT last_name, job_id, department_id, hire_date

FROM employees

WHERE last_name=’Abel’;

Oracle stores dates in an internal numeric format, representing the century, year, month, day, hours,
minutes, and seconds. The default date display is DD-MON-RR.

Note: Changing the default date format is covered later in the course.

2-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Character Strings and Dates

• Character strings and date values are enclosed in
single quotation marks.

• Character values are case sensitive and date values
are format sensitive.

• The default date format is DD-MON-RR.
– Allows you to store 21st century dates in the 20th

century by specifying only the last two digits of
the year.

– Allows you to store 20th century dates in the 21st
century in the same way.

Oracle9i: SQL for End Users 2- 7

Comparison Operators

Use comparison operators in conditions to compare one expression with another. Comparison operators
are used in the WHERE clause in the following format.

Syntax

… WHERE expr operator value

Examples

… WHERE department_id = 90

… WHERE salary >= 1500

… WHERE first_name = 'Lex'

2-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Comparison Operators

Operator

=

>

>=

<

<=

<>

Meaning

Equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

Not equal to

Oracle9i: SQL for End Users 2- 8

2-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the Comparison Operators with
Characters

SELECT last_name, manager_id
FROM employees
WHERE last_name=’Ernst’;

Using the Comparison Operators with Characters
In the slide, the SELECT statement retrieves the last name and manager ID from the EMPLOYEES
table where the employee name is ‘Ernst ‘. Because the character comparison is case sensitive, the
value in the WHERE clause must match the case of the employee name exactly.
SELECT last_name, department_id

FROM employees

WHERE last_name =’ernst’;

no rows selected

Column aliases cannot be used with comparison operators.
SELECT last_name EMPNAME, department_id

FROM employees

WHERE EMPNAME =’Ernst’;

Oracle9i: SQL for End Users 2- 9

2-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Other SQL Comparison Operators

Operator

BETWEEN

...AND...

IN (set)

LIKE

IS NULL

Meaning

Between two values (inclusive)

Match any of a list of values

Match a character pattern

Is a null value

More Comparison Operators

You can also use these comparison operators in conditions that compare one expression with another.
The examples below show sample WHERE clauses that use comparison operators.

Examples

… WHERE salary BETWEEN 300 and 500

… WHERE salary IN (1500,1300)

… WHERE first_name LIKE 'Nee%'

… WHERE manager_id IS NULL

Oracle9i: SQL for End Users 2- 10

2-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the BETWEEN Operator

Use the BETWEEN operator to display rows based on
a range of values.

SELECT last_name, salary
FROM employees
WHERE salary BETWEEN 9000 AND 17000;

Lower
limit

Higher
limit

Using the BETWEEN Operator

Use the BETWEEN operator to display rows based on a range of values. The range that you specify
contains a lower limit and an upper limit.

The SELECT statement in the slide returns rows from the EMPLOYEES table for any employee
whose salary is between $9000 and $17000.

Note: Values specified with the BETWEEN operator are inclusive. You must specify the lower
limit first. Observe in the output that the records with the salary values of 9000 and 17000 are
included in the output.

Oracle9i: SQL for End Users 2- 11

2-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the IN Operator

Use the IN operator to test for values in a set.

SELECT employee_id, last_name,
salary, manager_id

FROM employees
WHERE manager_id IN (100, 102, 103);

Using the IN Operator

Use the IN operator to test for values in a specified set.

The example in the slide displays the employee ID, name, salary, and manager ID of all the
employees whose manager ID is 100, 102, or 103.

The IN operator can be used with any data type. The following example returns a row from the
EMPLOYEES table for an employee whose department number is included in the set of department
numbers in the WHERE clause.

SELECT employee_id, last_name, manager_id, department_id

FROM employees

WHERE department_id IN (60,50);

Note: If characters or dates are used in the set, they must be enclosed in single quotation marks

(’ ’).

Oracle9i: SQL for End Users 2- 12

2-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the IN Operator with Strings

Use the IN operator to test for values in a set of
strings.

SELECT last_name, department_id, hire_date
FROM employees
WHERE last_name IN (’De Haan’,’Kochhar’) ;

Using the IN Operator (continued)

The example in the slide retrieves details for employees whose name matches ‘De Haan ' or
‘Kochhar ‘.

The WHERE clause uses the IN operator to check for the occurrence of the employee last name in
a set of names: De Haan, Kochhar. Note that the set of names is in mixed case.

The following example below retrieves the last names of all employees who are either salesmen or
marketing managers.

SELECT last_name

FROM employees

WHERE job_id IN (’SA_MAN’,’MK_MAN’);

.

Oracle9i: SQL for End Users 2- 13

2-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the LIKE Operator

• Use the LIKE operator to perform wildcard searches
of valid search string values.

• Search conditions can contain either literal
characters or numbers.
– The % symbol denotes zero or many characters
– The _ symbol denotes one character

SELECT last_name
FROM employees
WHERE last_name LIKE ’H%’;

Using the LIKE Operator

You may not always know the exact search condition. You can select rows that match a character
pattern by using the LIKE operator. The character pattern matching operation is called a wildcard
search. You can use two symbols to construct the search string: the percentage sign and the
underscore.

The SELECT statement in the slide returns the employee name from the EMPLOYEES table for an
employee whose last name begins with an uppercase H. Names that begin with a lowercase h are
not returned.

The following example displays the last names, salaries, and jobs of all employees whose job ID
begins with uppercase M.

SELECT last_name, salary, job_id
FROM employees

WHERE job_id LIKE ’M%’;

Symbol Description

% Represents any sequence of zero or more characters

_ Represents any single character

Oracle9i: SQL for End Users 2- 14

2-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the LIKE Operator

• You can combine pattern matching characters.

SELECT last_name
FROM employees
WHERE first_name LIKE ’_a%’;

• Use the ESCAPE identifier to search for % and _.

Combining Wildcard Characters
You can use the % and _ symbols in any combination with literal characters. The example in the
slide displays the names of all employees whose name has an ’ a ’ as the second character.

The ESCAPE Option

When you need to have an exact match for the actual % and _ characters, use the ESCAPE option.
You specify the ESCAPE character using this option. If you have ’K_ ’ appearing as part of a job
ID, you may search for it using the following SQL statement:
SELECT last_name, job_id

FROM employees
WHERE job_id LIKE ’%K_%’ ESCAPE’\’;

The ESCAPE option identifies the backslash as the escape character. In the pattern, the escape
character precedes the underscore. This causes the Oracle server to interpret the underscore
literally. If escape character is not specified, there is no default escape character.

Oracle9i: SQL for End Users 2- 15

2-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the IS NULL Operator

Test for null values with the IS NULL operator.

SELECT last_name, manager_id
FROM employees
WHERE manager_id IS NULL;

Using the IS NULL Operator

The IS NULL operator tests for values that are null. A null value means that the value is
unavailable, unassigned, unknown, or inapplicable. You cannot test with (=) because a null value
cannot be equal or unequal to any value. The example in the slide retrieves the names of all
employees who do not have a manager.

To display the last name, job ID, and commission for all employees who are not entitled to get a
commission, use the following statement:

SELECT last_name, job_id, commission_pct

FROM employees

WHERE commission_pct IS NULL;

…

Oracle9i: SQL for End Users 2- 16

2-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Logical Operators

Operator

AND

OR

NOT

Meaning

Returns TRUE if both component
conditions are TRUE

Returns TRUE if either component
condition is TRUE

Returns TRUE if the following
condition is FALSE

Logical Operators

A logical operator combines the result of two or more component conditions to produce additional or
alternative conditions or to invert the result of a single condition. Three logical operators are available
in SQL:
• AND
• OR
• NOT

All the examples so far have specified only one condition in the WHERE clause. You can use the AND
and OR operators to specify several conditions in one WHERE clause.

Oracle9i: SQL for End Users 2- 17

2-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the AND Operator

AND requires both conditions to be TRUE.

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >= 1100 AND job_id=’ST_CLERK’ ;

Using the AND Operator

With the AND operator, both conditions must be true for the row to be selected. In the example in
the slide, the details of any employee who has a job ID of ST_CLERK and earns $1100 or more is
retrieved.

Note: All character searches are case sensitive. No rows are returned if ST_CLERK is not in all
uppercase letters. You must enclose character and date strings in single quotation marks.

AND Truth Table

The following table shows the results of combining two expressions with AND:

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

Oracle9i: SQL for End Users 2- 18

2-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the AND Operator

AND requires both conditions to be TRUE.

SELECT last_name, manager_id,
salary, department_id

FROM employees
WHERE salary > 5000
AND department_id = 60;

Using the AND Operator (continued)

You may combine any two (or more) conditions with the AND operator.

The following example uses the IN and = operators to retrieve all employees whose job id is
AD_VP and who work in department number 90 or 60.

SELECT last_name, department_id,job_id
FROM employees
WHERE department_id in (90,60)
AND job_id = ’AD_VP’;

Oracle9i: SQL for End Users 2- 19

2-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the OR Operator

OR requires either condition to be TRUE.
SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >= 12000
OR job_id = ’ST_CLERK’;

Using the OR Operator

The OR operator selects a row for which either condition is true. Therefore an employee who has
a job title of ST_CLERK or earns $12,000 or more is selected. Observe that the value 12000 is
included in the results set.

OR Truth Table

The following table shows the results of combining two expressions with OR:

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

Oracle9i: SQL for End Users 2- 20

2-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the OR Operator

OR requires either condition to be TRUE.

SELECT last_name, department_id,manager_id
FROM employees

WHERE department_id = 60
OR manager_id = 124;

Using the OR Operator (continued)

The example in the slide selects any employee who works in department ID 60 or whose manager
ID is 124.

Oracle9i: SQL for End Users 2- 21

2-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NOT Operator

SELECT first_name, job_id

FROM employees

WHERE job_id NOT IN

(’ST_CLERK’,’SA_REP’,’IT_PROG’);

Using the NOT Operator

The example in the slide displays the last name and job ID of all employees whose job ID is not
ST_CLERK, SA_REP, or IT_PROG.

The following table shows the result of applying the NOT operator to a condition:

NOT Truth Table

Note: The NOT operator can also be used with other SQL operators such as BETWEEN, LIKE, and
NULL:

... WHERE salary NOT BETWEEN 1000 AND 1500

... WHERE first_name NOT LIKE ’%A%’

... WHERE commission_pct IS NOT NULL

NOT TRUE FALSE UNKNOWN

 FALSE TRUE UNKNOWN

Oracle9i: SQL for End Users 2- 22

2-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NOT Operator

SELECT employee_id, last_name,department_id,
manager_id

FROM employees
WHERE manager_id NOT LIKE ’10%’ ;

Using the NOT Operator with the LIKE Operator

The expression in the slide returns the employee ID, last name, department ID, and manager ID of
the employees whose manager ID does not begin with 10.

Oracle9i: SQL for End Users 2- 23

2-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NOT Operator

SELECT employee_id, salary, manager_id
FROM employees

WHERE salary NOT BETWEEN 4000 AND 15000;

Using the NOT Operator with the BETWEEN Operator

The expression in the slide returns the employee ID, salary, and manager ID of all employees
whose salary is not between $4000 and $15000. In other words, the expression is true if an
employee earns less than $4000 or more than $15000.

Oracle9i: SQL for End Users 2- 24

2-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NOT Operator

SELECT last_name, salary AS
"Salary Before Commission",commission_pct

FROM employees
WHERE commission_pct IS NOT NULL ;

Using the NOT Operator with the IS NULL Operator

The expression in the slide evaluates to true if the value in the COMMISSION_PCT column is not
a null value. In other words, the expression is true if an employee earns a commission.

Oracle9i: SQL for End Users 2- 25

Rules of Precedence

Precedence is the order in which Oracle evaluates different operators in the same expression. When
evaluating an expression containing multiple operators, Oracle evaluates operators with higher
precedence before evaluating those with lower precedence. Oracle evaluates operators with equal
precedence from left to right within an expression.

2-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules of Precedence

Use parentheses to override rules of precedence.

Order Evaluated Operator
1 All comparison

operators
2 NOT

3 AND

4 OR

Oracle9i: SQL for End Users 2- 26

2-26 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name,manager_id, job_id
FROM employees
WHERE manager_id = 100
OR manager_id = 124
AND job_id = ’ST_CLERK’;

Rules of Precedence

Example of Precedence of the AND Operator

In the example in the slide, there are effectively two conditions, either of which can be met:

• The first condition is that MANAGER_ID is 100

• The second condition is that MANAGER_ID is 124 and JOB_ID is ST_CLERK.

Observe that the results set contains nine records.

Oracle9i: SQL for End Users 2- 27

2-27 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name,manager_id, job_id
FROM employees
WHERE (manager_id = 100
OR manager_id = 124)
AND job_id = ’ST_CLERK’;

Rules of Precedence

Use parentheses to force priority.

Using Parentheses

In the example in the slide, there are two conditions both having to be met:

• The first condition is that MANAGER_ID is 100 or 124

• The second condition is that JOB_ID is ST_CLERK.

Observe that the results set contains only four records as against the example in the previous page
that retrieved nine records.

Oracle9i: SQL for End Users 2- 28

2-28 Copyright © Oracle Corporation, 2001. All rights reserved.

ORDER BY Clause
• Sort rows with the ORDER BY clause

– ASC: ascending order, default
– DESC: descending order

• The ORDER BY clause comes last in the SELECT
statement.

SELECT last_name, job_id, department_id
FROM employees
ORDER BY department_id ;

…

The ORDER BY Clause

The order of rows returned in a query result is undefined. You can use the ORDER BY clause to
sort the rows. You must place the ORDER BY clause last. You can specify a column, an
expression or an alias to sort by.

Syntax

In the syntax:

ORDER BY Specifies the order in which the retrieved rows are displayed
ASC Orders the rows in ascending order. This is the default order
DESC Orders the rows in descending order

Note: If you don’t use an ORDER BY clause, the sort order is undefined, and the Oracle Server
may not always fetch rows in the same order for the same query. Use the ORDER BY clause to
display the rows in a specific order.

SELECT expr

FROM table

[WHERE condition (s)]

[ORDER BY {column, expr, alias} [ASC|DESC]];

Oracle9i: SQL for End Users 2- 29

2-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Sorting in Descending Order

SELECT last_name, job_id, department_id
FROM employees
ORDER BY department_id DESC ;

…

Default Ordering of Data

The default sort order is ascending:

• Numeric values are displayed with the lowest values first: for example, 1 to 999.

• Date values are displayed with the earliest value first: for example, 01-JAN-1992 before
01-JAN-1995.

• Character values are displayed in alphabetical order: for example, A first and Z last.

• Null values are displayed last for ascending sequences and first for descending sequences.

Reversing the Default Order
To reverse the order in which rows are displayed, use the keyword DESC after the column name in
the ORDER BY clause. The example in the slide sorts the result beginning with the highest
department ID.

Oracle9i: SQL for End Users 2- 30

2-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Sorting by Column Alias

SELECT employee_id, last_name,salary*12 annsal
FROM employees
ORDER BY annsal ;

…

Sorting by Column Aliases
You can use a column alias in the ORDER BY clause. The example in the slide sorts the data by
annual salary.

Oracle9i: SQL for End Users 2- 31

2-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Sorting by Multiple Columns

The order of an ORDER BY list is the order of the sort.

SELECT last_name, department_id, salary
FROM employees
ORDER BY department_id, salary DESC ;

…

Sorting by Multiple Columns

You can sort query results by more than one column.

In the ORDER BY clause, specify the columns and separate the column names with commas. If
you want to reverse the order of a column, specify DESC after its name.

Example:

Display last name and salary of all employees. Order the result by department ID in ascending and
then salary in descending order.

SELECT last_name, salary

FROM employees

ORDER BY department_id, salary DESC;

Oracle9i: SQL for End Users 2- 32

2-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Sorting by a Column Not in the SELECT
List

SELECT last_name, department_id
FROM employees
ORDER BY salary ;

…

Sorting by a Column Not in the SELECT List

You can sort by columns that are not included in the SELECT clause. The example in the slide
lists the output in ascending order of salary even though the SALARY column does not appear in
the SELECT statement.

The statement is repeated below with the SALARY column included in the SELECT list.
Comparison verifies that the order of both results is the same.
SELECT last_name, department_id, salary
FROM employees
ORDER BY salary;

…

Oracle9i: SQL for End Users 2- 33

2-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

SELECT [DISTINCT] {*, column|expression [alias],...}

FROM table

WHERE condition(s)

[GROUP BY group_by_expression]

[ORDER BY {column, expr, alias} [ASC|DESC]] ;

Summary
In this lesson, you learned about restricting and sorting rows returned by the SELECT statement.
You also learned how to use various operators.

Oracle9i: SQL for End Users 2- 34

2-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 2 Overview

This practice covers the following topics:
• Selecting data and changing the order of rows

displayed
• Restricting rows by using the WHERE clause

Practice 2 Overview
This practice contains a variety of exercises using the WHERE clause and the ORDER BY clause.

Oracle9i: SQL for End Users 2- 35

Practice 2

1. You can order by a column that you have not selected.

True/False

2. The following statement will execute successfully.

True/False

SELECT *

FROM employees

WHERE salary*12=9600;

3. Display the last name of the employee with the employee ID 104.

4. Display the last name, manager ID, and salary for all employees in department 20.

5. Display the last name and hire date of all employees whose last name begins with the letter H.

Oracle9i: SQL for End Users 2- 36

Practice 2 (continued)

6. Display the last name, manager ID, and salary for all employees whose salary is in the range of
$6000 through $8000.

7. Display the employee ID and last name for all clerks (JOB_ID = ST_CLERK) and who work
for manager 100 or 124.

8. Display the employee ID, last name, and manager ID for all employees whose salary is greater
than $2500 and who work in department 50.

Oracle9i: SQL for End Users 2- 37

Practice 2 (continued)
9. Display the last names and salary for all employees who work for the manager with the manager

ID 124, starting with the employee with the highest salary and ending with the employee with
the lowest salary.

10. Display the last name, job ID, and salary for all non sales employees who are earning less than
$2000 or more than $15000.

Oracle9i: SQL for End Users 2- 38

Copyright © Oracle Corporation, 2001. All rights reserved.

Single-Row Number and
Character Functions

Oracle9i: SQL for End Users 3- 2

Lesson Aim

You use functions to manipulate data values. Functions make the basic query block more powerful. This
is the first of two lessons that explore functions. This lesson focuses on single-row character and number
functions.

3-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the various types of functions available in

SQL
• Use single-row character and number functions in
SELECT statements

• Handle null values in arithmetic expressions

Oracle9i: SQL for End Users 3- 3

3-3 Copyright © Oracle Corporation, 2001. All rights reserved.

How does a Function Work?

FunctionInput

Performs
operation

Output

How does a Function Work?

A function performs an operation on some input that it receives and returns the result of the
operation.

Oracle9i: SQL for End Users 3- 4

3-4 Copyright © Oracle Corporation, 2001. All rights reserved.

How SQL Functions Work

Returns a
value

FunctionInput

Function
performs
operation

Output

arg 2

arg n

arg 1

SQL Functions

Functions are a very powerful feature of SQL. You use them to:

• Perform calculations on data

• Modify individual data items

• Manipulate output for groups of rows

• Format dates and numbers for display

• Convert column data types

SQL functions can accept arguments and always return a single value.

Note: Most of the functions described in this lesson are specific to Oracle’s version of SQL.

Oracle9i: SQL for End Users 3- 5

3-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of a Function

9

AdditionInput

Function
performs
addition

Output

6

3

Example of a Function
The ADDITION function is a simple example of a function. The ADDITION function takes
several numbers, adds them all together, and gives a result. In this example:

• The function is the addition operator.

• The input to the function is a list of numbers.

• The output is the sum of the numbers.

Oracle9i: SQL for End Users 3- 6

3-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Two Types of SQL Functions

Functions

Single-row
functions

Multiple-row
functions

Types of SQL Functions

There are two distinct types of functions:

• Single-row functions

• Multiple-row functions

Single-Row Functions

Single-row functions operate on single rows only and return one result per row. There are different
types of single-row functions. This lesson covers character and number functions.

Multiple-Row Functions

Multiple-row functions manipulate groups of rows to give one result per group of rows. Multiple-
row functions are covered later in this course.

For a complete list of available functions and syntax, see Oracle Server SQL Reference.

Oracle9i: SQL for End Users 3- 7

How Single-Row Functions Work?

Single-row functions are used to manipulate data items. They accept one or more arguments and return
one value for each row returned by the query. An argument can be:

• A user-supplied constant

• A variable value

• A column name

• An expression

Features of Single-Row Functions

• Single-row functions act on each row returned in the query.

• Single-row functions return one result per row.

• Single-row functions can return a data value of a different type than that referenced.

• Single-row functions can accept one or more arguments.

• Single-row functions can be used in SELECT, WHERE, and ORDER BY clauses.

• Single-row functions can be nested.

3-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Single-Row Functions

• Manipulate data items
• Accept arguments and return one value
• Act on each row returned
• Return one result per row
• Can modify the data type
• Can be nested

Oracle9i: SQL for End Users 3- 8

3-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Character Number

Single-Row Functions

Conversion Date

NumberCharacter

Single-row
functions

Single-Row Functions

This lesson covers the following single-row functions:

• Character functions: Accept character input and can return both character and number values

• Number functions: Accept numeric input and return numeric values

The remaining single-row functions are covered in the next lesson.

Oracle9i: SQL for End Users 3- 9

Calling a Function in SQL

SQL functions are built into Oracle and are available for use in various SQL statements. If you call a
SQL function with an argument of a datatype other than the datatype expected by it, Oracle implicitly
converts the argument to the expected datatype before performing the function.

In the syntax diagrams for SQL functions, arguments are indicated by their datatypes. The slide displays
a generic format for the SQL functions.

3-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Calling a Function in SQL

• function_name name of the function
• column any named database column
• expression any character string or calculated
expression

• Arg1,arg2 any argument to be used by the
function

function_name ({col, expr}[, arg1[, arg2])

Oracle9i: SQL for End Users 3- 10

3-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Character Functions

Character
functions

LOWER

UPPER

INITCAP

Case conversion
functions

Character manipulation
functions

Character Functions

Single-row character functions accept character data as input and can return both character and
number values. Character functions can be divided into:

• Case conversion functions: Convert the case of character strings

• Character manipulation functions: Perform operations on strings such as creating a substring,
instring and so on.

This lesson covers the case conversion functions. Character manipulation functions are not covered
in this course.

Note: This list is a subset of the available character functions.

For more information, see Oracle Server SQL Reference, “Character Functions.”

Oracle9i: SQL for End Users 3- 11

Case Conversion Functions
LOWER, UPPER, and INITCAP are the three case conversion functions.

LOWER: Converts a mixed case or uppercase character string to lowercase

UPPER: Converts a mixed case or lowercase character string to uppercase

INITCAP: Converts the first letter of each word to uppercase and the remaining letters to
lowercase

3-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Function Result

Case Conversion Functions

Convert the case for character strings

LOWER(’SQL Course’)

UPPER(’SQL Course’)

INITCAP(’SQL Course’)

sql course

SQL COURSE

Sql Course

Oracle9i: SQL for End Users 3- 12

3-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Case Conversion Functions

Display the last names of all employees in uppercase.

SELECT UPPER(last_name) as "LAST NAME"
FROM employees;

…

Using Case Conversion Functions

The example in the slide displays the last names of all employees in uppercase letters. Observe the
usage of the double quotes in the alias, LAST NAME. Usage of the double quotes preserves the
case of the alias and helps include a space in the alias name.

Oracle9i: SQL for End Users 3- 13

3-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Case Conversion Functions

Display the employee ID, last name, and department
ID for employee Taylor.

SELECT employee_id, last_name, department_id
FROM employees
WHERE last_name = ’taylor’ ;

SELECT employee_id, last_name, department_id
FROM employees
WHERE LOWER(last_name)= ’taylor’;

Using Case Conversion Functions (continued)

The example in the slide displays the employee ID, last name, and department ID of the employee
Taylor.

The WHERE clause in the first SQL statement specifies the last name as ’taylor’. Because all of the
data in the EMPLOYEES table is stored in initcap case, the name ’taylor’ does not find a match in
the EMPLOYEES table and no rows are selected.

The WHERE clause in the second SQL statement specifies that the last name column in the
EMPLOYEES table is converted to lowercase and compared to ’taylor’. Because both the names are
in lower case now, a match is found and one row is selected. You can produce the same result by
rewriting the WHERE clause in the following manner:

… WHERE last_name = 'Taylor'

Note that the name in the output appears as it was stored in the database.

Oracle9i: SQL for End Users 3- 14

Number Functions

Number functions accept numeric input and return numeric values.

Note: This list is a subset of the available number functions.

For more information, see Oracle Server SQL Reference, “Number Functions.”

3-14 Copyright © Oracle Corporation, 2001. All rights reserved.

• ROUND: Rounds value to the specified number of
decimal places

ROUND(45.926, 2) 45.93

• TRUNC: Truncates value to the specified number of
decimal places

TRUNC(45.926, 2) 45.92

• MOD: Returns remainder of division

MOD(1600, 300) 100

Number Functions

Function Purpose

ROUND(column|expression, n) Rounds the column, expression, or value to n decimal places.
If n is omitted, the column, expression or value is rounded
to 0 decimal places. If n is negative, numbers to the left
of the decimal point are rounded.

TRUNC(column|expression,n) Truncates the column, expression, or value to n decimal
places or if n is omitted, no decimal places. If n is negative,
numbers to the left of the decimal point are truncated to zero.

MOD(m,n) m is divided by n a whole number of times.

Oracle9i: SQL for End Users 3- 15

3-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the ROUND Function

Display the monthly commission of salesmen
rounded to hundredths and to no decimal places.

SELECT ROUND(commission_pct/12,2),
ROUND(commission_pct/12,0)

FROM employees
WHERE job_id = ’SA_MAN’;

The ROUND Function

The ROUND function rounds the column, expression, or value to n decimal places. If the second
argument is 0 or is missing, the value is rounded to zero decimal places. If the second argument is
2, the value is rounded to two decimal places, or to hundredths and to a whole number. If the
second argument is -1, the value is rounded to one decimal place to the left, or to the nearest
multiple of ten.

More Examples of ROUND

SELECT ROUND(16.746), ROUND(16.746,1), ROUND(16.746,2),
ROUND(16.746,-1)

FROM dual;

Oracle9i: SQL for End Users 3- 16

3-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TRUNC Function

Display the monthly commission of salesmen
truncated to hundredths, and to no decimal places.

SELECT TRUNC(commission_pct/12,2),
TRUNC(commission_pct/12,0)

FROM employees
WHERE job_id=’SA_MAN’;

The TRUNC Function

The TRUNC function truncates the column, expression, or value to n decimal places.

The TRUNC function and ROUND function work with similar arguments. If the second argument is
0 or is missing, the value is truncated to zero decimal places. If the second argument is 2, the value
is truncated to two decimal places, or to hundredths and to a whole number. If the second
argument is -1, the value is truncated to one decimal place to the left, or to the preceding multiple
of ten.

More Examples of TRUNC

SELECT TRUNC(16.746), TRUNC(16.746,1), TRUNC(16.746,2),
TRUNC(16.746,-1)FROM dual;

The ROUND and TRUNC functions can also be used with date functions. This subject is covered
later in the course.

Note: DUAL is a one-column, one-row table that is used as a dummy table.The DUAL table is
covered later in this course.

Oracle9i: SQL for End Users 3- 17

3-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining a Null Value
• A null is a value that is unavailable, unassigned,

unknown, or inapplicable.
• A null is not the same as zero or a blank space.

SELECT last_name, job_id, commission_pct
FROM employees;

…

Null Values

If a row lacks the data value for a particular column, the value is said to be null, or to contain null.

A null value is a value that is unavailable, unassigned, unknown, or inapplicable. It is not the same
as zero or a space. Zero is a number, and a space is a character.

Columns of any data type can contain null values, unless the creator of the column defined it as
NOT NULL or as PRIMARY KEY.

In the COMMISSION_PCT column in the EMPLOYEES table, notice that only a salesman can earn
commission. Other employees are not entitled to earn commission. A null value represents this
fact.

Oracle9i: SQL for End Users 3- 18

3-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Null Values in Arithmetic Expressions
Arithmetic expressions that contain a null value
evaluate to null.
SELECT last_name NAME,job_id,

12*salary*(1+commission_pct)
FROM employees;

…

Null Values (continued)

If any column value in an arithmetic expression is null, the result is null. If you attempt to perform
division with zero, you get an error. However, if you divide a number by null, the result is a null or
unknown.

In the example in the slide, the 12*salary*(1+commission_pct)expression is intended to
calculate the annual remuneration for each employee. However, several employees (for example,
King) show no value in the 12*salary*(1+commission_pct) column. This is because
King is not a salesman and does not get any commission. Because the COMMISSION_PCT
column in the arithmetic expression is null, the result is null.

Note that for employee Abel, who is a salesman, the expression gives a valid annual remuneration
amount.

Note: For more information, see Oracle Server SQL Reference, “Elements of SQL.”

Oracle9i: SQL for End Users 3- 19

3-19 Copyright © Oracle Corporation, 2001. All rights reserved.

The NVL Function

• Use the NVL function to force a value where a null would
otherwise appear

• NVL can be used with date, character, and number data
types.

• Data types must match. For example:
– NVL(commission+pct,0)

– NVL(hire_date,’01-JAN-97’)

– NVL(job_id,’no job yet’)

NVL (expr1, expr2)

The NVL function

The NVL function provides a mechanism to deal with null values.

• The NVL function requires two arguments:

• An expression

• A non null value

• You can use the NVL function to convert a null number, date, or character string to another
number, date, or character string as long as the data types match.

In the syntax shown in the slide:
expr1 is the source value or expression that may contain null
expr2 is the target value for converting null

Oracle9i: SQL for End Users 3- 20

3-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NVL Function to Handle
Null Values

SELECT last_name, job_id,
12*salary*(1+NVL(commission_pct,0))

FROM employees;

…

Using the NVL Function to Handle Null Values

Only employees with job titles of SA_MAN or SA_REP show a value in the COMMISSION_PCT
column of the EMPLOYEES table. In other words, only salesmen earn commission. All other
employees have a null value in the COMMISSION_PCT column.

To achieve the correct result for King (and all other employees who do not earn commission), you
must convert the null value to a number before applying the arithmetic operator. In the example in
the slide, the NVL function is used to convert a COMMISSION_PCT value of NULL to zero.

Oracle9i: SQL for End Users 3- 21

Summary

Single-row functions can manipulate:

• Character data: LOWER, UPPER, INITCAP

• Number data: ROUND, TRUNC, MOD

• NULL data: NVL

3-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Use functions to:
• Perform calculations on data by using number functions

or using character functions
• Modify individual data items
• Use single-row functions to manipulate:

– Character data: LOWER, UPPER, INITCAP
– Number data: ROUND, TRUNC, MOD

• Handle null values
– NVL

Oracle9i: SQL for End Users 3- 22

3-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 3 Overview

This practice covers the following topics:
• Using number functions to alter the display of numeric

data
• Using character functions to alter the display of

character data
• Using the NVL function to handle NULL values

Practice 3 Overview
This practice gives you a chance to use character, number and NVL functions in the SELECT statement.

Oracle9i: SQL for End Users 3- 23

Practice 3

1. Single-row functions work on many rows to produce a single result.

True/False

2. Display the last name and salary plus $600 for all employees in department 20. The name should
be displayed in upper case.

3. Display the employee ID, last name, and salary increased by 15% and expressed as a whole
number, for all employees in department 20. Round up any cents in the new salary amounts to
the nearest dollar. Give the column the heading, SAL+15%, as shown:

Oracle9i: SQL for End Users 3- 24

Practice 3 (continued)

4. Produce the following list of employees and their jobs.

5. Display the employee ID, last name, monthly commission percentage, and monthly commission
pct rounded to two decimal places for all salesmen. (JOB_ID = ‘SA_MAN’ or JOB_ID
=‘SA_REP’)

Note: COMMISSION_PCT is an annual figure.

Oracle9i: SQL for End Users 3- 25

Practice 3 (continued)

6. Produce a one - column report showing the first name and last name of each employee separated
by a dash (-). Give the column the heading Employee Details, as shown:

Oracle9i: SQL for End Users 3- 26

Practice 3 (continued)

7. Display the last name, job ID, and total annual income (including commission where applicable)
for all employees.

Oracle9i: SQL for End Users 3- 27

Practice 3 (continued)

8. Display the employee ID, last name, and salary plus the commission amount increased by 20%
for all employees.

Oracle9i: SQL for End Users 3- 28

Copyright © Oracle Corporation, 2001. All rights reserved.

Single-Row Date and
Conversion Functions

Oracle9i: SQL for End Users 4- 2

Lesson Aim

The previous lesson discussed the number and character single-row functions.

This lesson focuses on single-row functions that operate on dates and functions that convert data from
one type to another: for example, from character data to numeric. The lesson also covers nested
functions.

4-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Use SYSDATE in conjunction with SELECT

statements
• Describe the use of conversion functions
• Use date functions in SELECT statements
• Nest functions within a SELECT statement

Oracle9i: SQL for End Users 4- 3

4-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Conversion Date

Single-Row Functions

Conversion Date

Single-row
functions

NumberCharacter

Single-Row Functions

This lesson covers the following single-row functions:

• Date functions: Operate on values of the date data type. All date functions return a value of
date data type except for the MONTHS_BETWEEN function, which returns a number.

• Conversion functions: Convert a value from one data type to another.

Oracle9i: SQL for End Users 4- 4

Oracle Date Storage
In the example in the slide, the HIRE_DATE for the employee is displayed in the default format
DD-MON-RR. However, dates are not stored in the database in this format. All the components of the
date and time are stored. So, although a HIRE_DATE like 07-JUN-94 is displayed as day, month and
year there is also time and century information associated with it. The complete data might be June
07, 1994 5:10:43 p.m.

This data is stored internally as follows:

CENTURY YEAR MONTH DAY HOUR MINUTE SECOND

19 94 06 07 5 10 43

Alternatively, if the HIRE_DATE is in the 21st century, say 07-Jun-2001, the complete data might
be June 07, 2001 5:10:43 p.m.

This data is stored internally as follows:

CENTURY YEAR MONTH DAY HOUR MINUTE SECOND

20 01 06 07 5 10 43

4-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Working with Dates

• Oracle database stores dates in an internal numeric
format: century, year, month, day, hours, minutes,
seconds.

• The default display date format is DD-MON-RR.

SELECT last_name, hire_date
FROM employees
WHERE last_name like ’G%’;

Oracle9i: SQL for End Users 4- 5

Oracle Date Storage (Continued)

Centuries and the Year 2000

The Oracle server is Year 2000 compliant. When a record with a date column is inserted into a table,
the century information is picked up from the SYSDATE. However, when the date column is displayed
on the screen, the century component is not displayed by default. The DATE datatype always stores year
information as a four-digit number internally, two digits for the century and two digits for the year. For
example, the Oracle database stores the year as 1996 or 2001, and not just as 96 or 01.

Oracle9i: SQL for End Users 4- 6

The RR Date Format Element

The RR date format is similar to the YY element, but it allows you to specify different centuries. You
can use the RR date format element instead of YY, so that the century of the return value varies
according to the specified two-digit year and the last two digits of the current year. The table on the slide
summarizes the behavior of the RR element.

Current Year Given Date RR Format YY Format

1994 27-OCT-95 1995 1995

1994 27-OCT-17 2017 1917

2001 27-OCT-17 2017 2017

4-6 Copyright © Oracle Corporation, 2001. All rights reserved.

RR Date Format

Current Year
1995
1995
2001
2001

Specified Date
27-OCT-95
27-OCT-17
27-OCT-17
27-OCT-95

RR Format
1995
2017
2017
1995

YY Format
1995
1917
2017
2095

If two digits
of the
current
year are:

0–49

0–49 50–99

50–99

The return date is in
the current century

The return date is in
the century after
the current one

The return date is in
the century before
the current one
The return date is in
the current century

If the specified two-digit year is:

Oracle9i: SQL for End Users 4- 7

4-7 Copyright © Oracle Corporation, 2001. All rights reserved.

SYSDATE

• Use SYSDATE to display the current date and time.
• SYSDATE can be displayed using the DUAL table.
• DUAL is a one-column, one-row table that is used as

a dummy table.

SELECT SYSDATE

FROM DUAL;

SYSDATE

SYSDATE is a date function that returns the current date and time. You can use SYSDATE just as
you would use any other column name. For example, you can display the current date by selecting
SYSDATE from a table. It is customary to select SYSDATE from a dummy table called DUAL.

DUAL

The DUAL table is automatically created by the Oracle server and can be accessed by all users. It
has one column, DUMMY, defined to be VARCHAR2(1), and contains one row with a value ’X’.
The DUAL table is useful for computing a constant expression with the SELECT statement.
Because DUAL has only one row, the constant is returned only once. Alternatively, you can select
a constant, pseudocolumn, or expression from any table, but the value will be returned as many
times as there are rows in the table.

Example
Display the current date by using the DUAL table:
SELECT SYSDATE
FROM DUAL;

Note: SYSDATE is a SQL function that returns the current date and time. Your results may differ
from the example in the slide.

Oracle9i: SQL for End Users 4- 8

Using Arithmetic Operators with Dates

Because the database stores dates as numbers, you can use arithmetic operators to perform calculations
such as addition and subtraction on dates. You can add and subtract number constants as well as dates.

You can perform the following operations on dates:

The Oracle Server interprets number constants in arithmetic date expressions as numbers of days. For
example, SYSDATE + 1 is tomorrow. SYSDATE - 7 is one week ago. Subtracting the HIRE_DATE
column of the EMPLOYEES table from SYSDATE returns the number of days since each employee was
hired. You cannot multiply or divide DATE values.

4-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Arithmetic with Dates

• Add or subtract a number to or from a date to obtain
a date value

• Subtract two dates to find the number of days
between those dates

Operation Result Description
date + number Date Add a number of days to a date
date - number Date Subtract a number of days from a date
date - date Number of days Subtract one date from another
date + number/24 Date Add a number of hours to a date

Oracle9i: SQL for End Users 4- 9

4-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Arithmetic Operators
with Dates

SELECT last_name, hire_date,

hire_date+30 "NEW DATE"

FROM employees
WHERE last_name=’Grant’;

Using Arithmetic Operators with Dates (continued)

The example in the slide displays the last name, hire date, and the date on which an employee’s
training period completes. The calculation simply adds 30 days to the HIRE_DATE to get the new
date.

Oracle9i: SQL for End Users 4- 10

4-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using SYSDATE in Calculations

For how many weeks have the employees in
department 10 worked ?

SELECT last_name, (SYSDATE-hire_date)/7
"WEEKS AT WORK"

FROM employees
WHERE department_id =10;

Performing Calculations with Dates

The example in the slide displays the last name and the number of weeks the employee has
worked for the company, for all employees in department 10. The example subtracts the date on
which the employee was hired from the current date (SYSDATE) and divides the result by 7 to
calculate the duration of employment in weeks.

Note: SYSDATE is a SQL function that returns the current date and time. Your results may differ
from the example.

Oracle9i: SQL for End Users 4- 11

4-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Data Type Conversion

NUMBER CHARACTER

TO_CHAR

TO_NUMBER

DATE

TO_CHAR

TO_DATE

Explicit Data Type Conversion

SQL provides three functions to convert a value from one data type to another:

Function Purpose
TO_CHAR(number|date,[
fmt],
[nlsparams])

Converts a number or date value to a
VARCHAR2 character string with format
model fmt.

Number Conversion:

The NLSPARAMS parameter specifies the
following characters, which are returned by
number format elements:

�� Decimal character

�� Group separator

�� Local currency symbol

�� International currency symbol

If NLSPARAMS or any one of the
parameters is omitted, this function uses the
default parameter values for the session.

Oracle9i: SQL for End Users 4- 12

Explicit Data Type Conversion (continued)

Note: This list is a subset of the available conversion functions.

For more information, see Oracle Server SQL Reference, “Conversion Functions.”

Function Purpose

 Date conversion:
The NLSPARAMS parameter specifies the
language in which month and day names
and abbreviations are returned. This
argument can have the form:

’NLS_DATE_LANGUAGE = language’

If this parameter is omitted, the default
date language is used for the session

TO_NUMBER(char,[fmt],
[nlsparams])

Converts a character string containing
digits to a number in the format specified
by the optional format model fmt.

The NLSPARAMS parameter has the same
purpose in this function as in the
TO_CHAR function for number
conversion.

TO_DATE(char,[
fmt],[nlsparams])

Converts a character string representing a
date to a date value according to the fmt
specified. If fmt is omitted, the format is
DD-MON-RR.

The NLSPARAMS parameter has the same
purpose in this function as in the
TO_CHAR function for date conversion.

Oracle9i: SQL for End Users 4- 13

4-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Modifying the Display Format of Dates

27-JAN-01

Saturday the 27th of January, 2001

January 27, 2001

01/27/01

Displaying a Date in a Specific Format
So far in this course, all Oracle date values have appeared in the DD-MON-RR format. You can
use the TO_CHAR function to convert a date from this default format to the one that you specify.

For example, 03-APR-71 can be displayed in many different formats including:

• 04/03/71

• April 3rd, 1971

• Third of April, nineteen seventy one

• Saturday, the 3rd of April, 1971

Oracle9i: SQL for End Users 4- 14

4-14 Copyright © Oracle Corporation, 2001. All rights reserved.

TO_CHAR Function with Dates

The format model:
• Is case sensitive and must be enclosed in single

quotation marks
• Can include any valid date format element
• Has an fm element to remove padded blanks or

suppress leading zeros
• Is separated from the date value by a comma

TO_CHAR(date, ’format_model’)

Guidelines for Date Format Models

• The format model is case sensitive and must be enclosed in single quotation marks.

• The format model can include any valid date format element. Be sure to separate the date value
from the format model with a comma.

• The names of days and months in the output are automatically padded with blanks.

• To remove padded blanks or to suppress leading zeros, use the fill mode (fm) element.

• You can resize the display width of the resulting character field with the iSQL*Plus COLUMN
command, which is covered later in this course.

• The default column width is 80 characters.

Oracle9i: SQL for End Users 4- 15

4-15 Copyright © Oracle Corporation, 2001. All rights reserved.

YYYY

Date Format Model Elements

YEAR

MM

MONTH

DY

DAY

Full year in numbers

Year spelled out

Two-digit value for month

Three-letter abbreviation of the
day of the week

Full name of the day

Full name of the month

MON Three-letter abbreviation of the month

Sample Valid Date Format Elements

Element Description
CC or SCC One greater than the first two digits of a

four-digit year; "S" prefixes BC dates with "-
".

For example, ’20’ from ’1900’.

Years in dates YYYY or SYYYY 4-digit year; "S" prefixes BC dates with "-".

YYY or YY or Y Last 3, 2, or 1 digits of year

Y,YYY Year with comma in this position

IYYY, IYY, IY, I 4, 3, 2, or 1 digit year based on the ISO
standard

SYEAR or YEAR Year spelled out; S prefixes B.C. date with -

BC or AD B.C./A.D. indicator without periods

B.C. or A.D. B.C./A.D. indicator with periods

Oracle9i: SQL for End Users 4- 16

Sample Valid Date Format Elements (continued)

Element Description

Q Quarter of year

MM Month, 2-digit value

MONTH Name of month padded with blanks to length of 9
characters

MON Name of month, three-letter abbreviation

RM Roman numeral month

WW or W Week of year or month

DDD or DD or D Day of year, month, or week

DAY Name of day padded with blanks to length of nine
characters

DY Name of day; three-letter abbreviation

J Julian day; the number of days since 31 December 4713
B.C.

RR Given a year with 2 digits:

�� If the year is <50 and the last 2 digits of the
current year are >=50, the first 2 digits of the
returned year are 1 greater than the first 2 digits
of the current year.

�� If the year is >=50 and the last 2 digits of the
current year are <50, the first 2 digits of the
returned year are 1 less than the first 2 digits of
the current year.

Oracle9i: SQL for End Users 4- 17

4-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_CHAR Function with Dates

SELECT last_name,

TO_CHAR(hire_date, ’Month DDTH, YYYY’)

AS HIREDATE
FROM employees
WHERE job_id =’IT_PROG’;

Using the TO_CHAR Function with Dates

In the example in the slide, TO_CHAR is used to display the HIRE_DATE column in the following
format: Month DDTH YYYY.

So the date 03-JAN-90 is displayed as January 03RD, 1990. Note the following points in the
display:

• The alias HIREDATE is used to replace the entire TO_CHAR expression in the column
heading.

• The day of the month is preceded by a 0. You can use the fm element to eliminate this digit.

When a record with a date column is inserted into a table using the DD-MON-YY date format, YY
indicates the year in the 20th century if the SYSDATE is less than or equal to 31-Dec-1999 (for
example, 31-DEC-92 is December 31, 1992). But if the SYSDATE is greater than 31-Dec-1999,
then YY indicates a year in the 21st century (for example, if the SYSDATE is 01-Jan-2000, then
31-DEC-92 will be December 31, 2092). You can display the date with the century component by
using the TO_CHAR function with the YYYY format.

Oracle9i: SQL for End Users 4- 18

4-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_CHAR Function with Dates

SELECT employee_id,

TO_CHAR(hire_date, ’MM/YY’) AS MONTH

FROM employees
WHERE last_name =’Vargas’;

Using the TO_CHAR Function with Dates (continued)

The SQL statement in the slide displays the employee ID and hire date for the employee whose
last name is Vargas. The TO_CHAR function is used to convert the display of the HIRE_DATE
column from the DD-MON-YY format to the simpler MM/YY format.

The order of the date can also be rearranged:

SELECT employee_id, last_name,

TO_CHAR(hire_date, ’YYYY-MON-DD’) HIRED

FROM employees;

Oracle9i: SQL for End Users 4- 19

Using the TO_CHAR Function with Dates (continued)

Oracle9i: SQL for End Users 4- 20

4-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_CHAR Function with Dates

SELECT last_name,

TO_CHAR(hire_date, ’fmDD Month YYYY’)
AS HIREDATE

FROM employees;

…

Using the TO_CHAR Function with Dates

The SQL statement in the slide displays the last name and hire dates for all employees. The
HIRE_DATE is displayed in the format 17 June 1987.

Use of fm in the date format model results in the entire date string being displayed with single
spaces between the day, month, and year, and justified to the left. The leading zeros from the day
and the trailing spaces from the month are also removed.

Oracle9i: SQL for End Users 4- 21

4-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_CHAR Function with Dates

SELECT last_name, manager_id, salary,
TO_CHAR(hire_date,’YYYY-MON-DD’)

AS HIREDATE
FROM employees
WHERE salary < 15000
AND hire_date like ’%90’;

Using the TO_CHAR Function with Dates

The example in the slide selects any employee who earns less than 15000 and was hired in the
nineties. The TO_CHAR function is used to convert the display of the HIRE_DATE column from a
DD-MON-YY format to the YYYY-MON-DD format.

Note: If there was an employee whose hire date was in the 21st century, say 01-JAN-2090, the
result would display that record also. The TO_CHAR function with the YYYY format ensures that
the century is displayed.

Oracle9i: SQL for End Users 4- 22

4-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_CHAR Function with Dates

SELECT employee_id,last_name,department_id,

TO_CHAR(hire_date,’MM-DD-YYYY’)
AS HIREDATE

FROM employees
WHERE hire_date NOT LIKE ’%99’;

…

Using the TO_CHAR Function with Dates (continued)

The expression in the slide returns the employee ID, last name, department ID, and hire date of the
employees who were not hired in the year 99. The TO_CHAR function is used to convert the
display of the HIRE_DATE column from a DD-MON-YY format to the MM-DD-YYYY format.

Oracle9i: SQL for End Users 4- 23

4-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_CHAR Function with Dates
SELECT last_name, job_id, department_id,

TO_CHAR(hire_date,’DD-MON-YYYY’)
AS HIREDATE

FROM employees
ORDER BY hire_date DESC;

…

Using the TO_CHAR Function with Dates (continued)

The example in the slide sorts the result, beginning with the most recently hired employee. The
TO_CHAR function is used to convert the display of the HIRE_DATE column from a
DD-MON-YY format to the DD-MON-YYYY format.

Note: If there was an employee whose hire date was in the 21st century, say 01-JAN-2003, the
result would display the record as the first record. The TO_CHAR function with the YYYY format
ensures that the century is displayed.

Oracle9i: SQL for End Users 4- 24

Time Formats

Use the formats listed in the following tables to display time information and literals and to change
numerals to spelled numbers.

Other Formats

Element Description

AM or PM Meridian indicator

A.M. or P.M. Meridian indicator with periods

HH or HH12 or HH24 Hour of day or hour (1-12) or hour (0-23)

MI Minute (0-59)

SS Second (0-59)

SSSSS Seconds past midnight (0-86399)

4-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Date Format Model Elements

• Time elements format the time portion of the date.

HH24:MI:SS 15:45:32

DD "of" MONTH 12 of OCTOBER

ddspth fourteenth

• Add character strings by enclosing them in double
quotation marks.

• Number suffixes spell out numbers

Element Description

/ . , Punctuation is reproduced in the result

" of the " Quoted string is reproduced in the result

Oracle9i: SQL for End Users 4- 25

Other Formats (continued)

Element Description

TH Ordinal number (for example, DDTH for 4TH)

SP Spelled-out number (for example, DDSP for
FOUR)

SPTH or THSP Spelled-out ordinal numbers (for example,
DDSPTH for FOURTH)

Oracle9i: SQL for End Users 4- 26

4-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Format Models to Display Time

SELECT TO_CHAR(SYSDATE,’HH24:MI:SS’) TIME
FROM DUAL;

Date Format Models to Display Time

As described earlier, the Oracle Server stores dates including hours, minutes, and seconds. Time
details can be displayed for a date by creating a date format model specifying the time details
desired. The example in the slide shows the display of the 24-hour time for the current date using a
date format model.

Example

The following example displays the 12-hour time with the addition of a meridian indicator to show
a.m. or p.m.

SELECT TO_CHAR(SYSDATE,’HH12:MI:SS a.m.’) TIME
FROM DUAL;

Oracle9i: SQL for End Users 4- 27

Date Format Models to Display Time (continued)

Example

The example below modifies the SELECT statement to display the HIRE_DATE in the following
format:

SELECT last_name,
TO_CHAR(hire_date, ’fmDdspth "of" Month

YYYY HH:MI:SS AM’) AS HIREDATE
FROM employees;

Instructor Note

Oracle9i: SQL for End Users 4- 28

4-28 Copyright © Oracle Corporation, 2001. All rights reserved.

TO_CHAR Function with Numbers

Use these formats with the TO_CHAR function to
display a number value as a character:

TO_CHAR(n,’fmt’)

9

0

$

L

.

,

Represents a number
Forces a zero to be displayed

Places a floating dollar sign

Uses the floating local currency symbol
Prints a decimal point

Places a thousand indicator

TO_CHAR Function with Numbers

Syntax:

TO_CHAR(n,’fmt’)

The TO_CHAR function converts n of NUMBER datatype to a value of VARCHAR2 datatype, using the
optional number format fmt. If you omit fmt, n is converted to a VARCHAR2 value exactly long enough
to hold its significant digits.

Number Format Elements

If you are converting a number to a character data type, use the following elements:

Element Description Example Result

9 Numeric position (number of 9s determine display
width)

999999 1234

0 Display leading zeros 099999 001234

$ Floating dollar sign $999999 $1234

L Floating local currency symbol L999999 FF1234

Oracle9i: SQL for End Users 4- 29

TO_CHAR Function with Numbers (continued)

Element Description Example Result

. Decimal point in position specified 999999.99 1234.00

, Comma in position specified 999,999 1,234

MI Minus signs to right (negative values) 999999MI 1234-

PR Parenthesize negative numbers 999999PR <1234>

EEEE Scientific notation (format must specify four Es) 99.999EEEE 1.234E+03

V Multiply by 10 n times (n = number of 9s after V) 9999V99 123400

B Display zero values as blank, not 0 B9999.99 1234.00

Oracle9i: SQL for End Users 4- 30

4-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_CHAR Function with Numbers

SELECT TO_CHAR(salary,’$99,999’) SALARY
FROM employees
WHERE last_name = ’Hartstein’;

Dollar sign
Thousand indicator

Using the TO_CHAR Function with Numbers

In the example in the slide, the TO_CHAR function formats the display of the numeric SALARY
column. TO_CHAR converts the SALARY column to the character data type and inserts a dollar
sign before the amount and a comma as a thousand indicator.

Guidelines

• The Oracle Server displays a string of hash signs (#) in place of a whole number whose digits
exceed the number of digits provided in the format model.

• The Oracle Server rounds the stored decimal value to the number of decimal spaces provided
in the format model.

Oracle9i: SQL for End Users 4- 31

The TO_NUMBER and TO_DATE Functions

You may want to convert a character string to either a number or a date. To accomplish this task, you
use the TO_NUMBER or TO_DATE functions. The format model you choose is based on the previously
demonstrated format elements.

4-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_NUMBER and TO_DATE
Functions

Convert a character string to a number format using
the TO_NUMBER function:

Convert a character string to a date format using the
TO_DATE function:

TO_NUMBER(char[, ’format_model’])

TO_DATE(char[, ’format_model’])

Oracle9i: SQL for End Users 4- 32

4-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_NUMBER Function

SELECT TO_NUMBER(’1000’)+salary AS NEW_SALARY
FROM employees
WHERE last_name = ’Matos’;

SELECT TO_NUMBER (’$1,000’,’L9,999’) as NEW_SALARY
FROM employees
WHERE last_name = ’De Haan’;

Using the TO_NUMBER Function

The first example in the slide takes the employee’s salary raise, which is in the form of a character
string, and converts it to a numeric value. It then adds the value to the employee’s salary, which is
also a numeric value.

The second example uses the L9,999 format model to return in the specified position the local
currency symbol (the current value of the NLS_CURRENCY parameter).

Oracle9i: SQL for End Users 4- 33

4-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_DATE Function

SELECT TO_DATE(’January 15, 1989, 11:00 A.M.’,
’Month dd, YYYY, HH:MI A.M.’)

FROM DUAL;

SELECT last_name, hire_date
FROM employees
WHERE hire_date = TO_DATE(’May 24, 1999’,

’Month DD, YYYY’);

Using the TO_DATE Function

The first example in the slide converts a character string into date.

The second example displays the last names and hire dates of all the employees who joined on
May 24, 1999.

Oracle9i: SQL for End Users 4- 34

How Date Functions Work

Date functions operate on Oracle dates. All date functions return a value of a date data type except
MONTHS_BETWEEN, which returns a numeric value. Some of the date functions are:

• MONTHS_BETWEEN(date1, date2): Finds the number of months between date1 and date2.
The result can be positive or negative. If date1 is later than date2, the result is positive; if date1 is
earlier than date2, the result is negative. The non-integer part of the result represents a portion of the
month.

• ADD_MONTHS(date, n): Adds n number of calendar months to date. n must be an integer and
can be negative. (ADD_MONTHS function will take decimal numbers but all decimal point will be
truncated.)

• NEXT_DAY(date,char): Returns the date of the first weekday named by char that is later than
the date date. Char may be a number representing a day or a character string.

• LAST_DAY(date): Finds the date of the last day of the month that contains date.

• ROUND(date[, fmt]): Returns date rounded to the unit specified by the format model fmt. If
the format model fmt is omitted, date is rounded to the nearest day.

• TRUNC(date[, fmt]): Returns date with the time portion of the day truncated to the unit
specified by the format model fmt. If the format model fmt is omitted, date is truncated to the current
day with the time as midnight.

The above list is a subset of the available date functions.

4-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Date Functions

Number of months
between two dates

MONTHS_BETWEEN

ADD_MONTHS

NEXT_DAY

LAST_DAY

ROUND

TRUNC

Adds calendar months to
the date specified

Next day following the date
specified

Last day of the month

Round off date

Truncate date

FUNCTION DESCRIPTION

Oracle9i: SQL for End Users 4- 35

4-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Date Functions

Use the ADD_MONTHS function to add months to a date.

SELECT last_name, hire_date,

ADD_MONTHS(hire_date, 6) AS "+6 MONTHS"
FROM employees
WHERE last_name=’Vargas’;

Oracle9i: SQL for End Users 4- 36

Sample Date Functions

For all employees employed for fewer than 30 months, display the last name, hire date, number of
months employed, six month review date, first Friday after hire date, and the last day of month when
there were hired.

SELECT last_name, hire_date,

MONTHS_BETWEEN(SYSDATE, hire_date) TENURE,

ADD_MONTHS(hire_date, 6) REVIEW,

NEXT_DAY(hire_date, ’Friday’), LAST_DAY(hire_date)

FROM employees

WHERE MONTHS_BETWEEN (SYSDATE, hire_date) < 30;

4-36 Copyright © Oracle Corporation, 2001. All rights reserved.

• MONTHS_BETWEEN(’01-SEP-95’,’11-JAN-94’)

Examples of Date Functions

• ADD_MONTHS(’11-JAN-94’,6)

• NEXT_DAY(’01-SEP-95’,’FRIDAY’)

• LAST_DAY(’01-SEP-95’)

19.6774194

11-JUL-94

08-SEP-95

30-SEP-95

Oracle9i: SQL for End Users 4- 37

4-37 Copyright © Oracle Corporation, 2001. All rights reserved.

Nesting Functions

• Single-row functions can be nested to any level.
• Nested functions are evaluated from the innermost

level to the outermost level.

F3(F2(F1(col,arg1),arg2),arg3)

Step 1 = Result 1

Step 2 = Result 2

Step 3 = Result 3

Nesting Functions

Single-row functions can be nested to any depth. Nested functions are evaluated from the innermost
level to the outermost level. The following examples show you the flexibility of these functions.

Oracle9i: SQL for End Users 4- 38

4-38 Copyright © Oracle Corporation, 2001. All rights reserved.

Nesting Functions

Result 1
Result 2

SELECT last_name,

NVL(TO_CHAR(manager_id),’No Manager’)

FROM employees
WHERE manager_id IS NULL;

Nesting Functions (continued)

The example in the slide displays the head of the company, who has no manager. The evaluation
of the SQL statement involves two steps:

1.Evaluate the inner function to convert a number value to a character string.

Result1 = TO_CHAR(manager_id)

2.Evaluate the outer function to replace the null value with a text string.

NVL(Result1, ’No Manager’)

The entire expression becomes the column heading because no column alias was given.

Example

Using the EMPLOYEES table, display the date of the Friday that is six months from the hire date.
The dates should be in the format Friday, December 18th, 1987. Order the results by hire date.

Oracle9i: SQL for End Users 4- 39

4-39 Copyright © Oracle Corporation, 2001. All rights reserved.

Nesting Functions

SELECT MONTHS_BETWEEN
(TO_DATE(’02-02-1995’,’MM-DD-YYYY’),
TO_DATE(’01-01-1995’,’MM-DD-YYYY’))
AS "Months"

FROM DUAL;

Nesting Functions (continued)

The example in the slide displays the months between 02-02-1995 and 01-01-1995.

1. Evaluate the inner function to convert the two strings, ’02-02-1995’and ’01-01-1995’
to dates.

2. Evaluate the outer function to calculate the months between these two dates.

SELECT TO_CHAR(NEXT_DAY(ADD_MONTHS(hire_date, 6),’FRIDAY’),
’fmDay, Month ddth, YYYY’) "Next 6 Month Review"

FROM employees
ORDER BY hire_date;

Oracle9i: SQL for End Users 4- 40

4-40 Copyright © Oracle Corporation, 2001. All rights reserved.

Using ROUND and TRUNC
with Date Functions

• ROUND(TO_DATE(’25-JUL-1995’,

’DD-MON-YYYY’),’MONTH’)

• ROUND(TO_DATE(’25-JUL-1995’,

’DD-MON-YYYY’),’YEAR’)

• TRUNC(TO_DATE(’25-JUL-1995’,

’DD-MON-YYYY’),’MONTH’)

• TRUNC(TO_DATE(’25-JUL-1995’,

’DD-MON-YYYY’),’YEAR’)

01-AUG-95

01-JAN-96

01-JUL-95

01-JAN-95

Using ROUND and TRUNC with Date Functions

You can use the ROUND and TRUNC functions for number and date values. These functions round or
truncate dates to the specified format model, such as to the nearest year or month.You can also round
dates to the nearest day using no format model, setting the time element to 12:00 a.m. (midnight).

Example

Compare the hire dates for all employees who were employed in 1997. Display the last name and hire
date. Also, display the month in which they were hired using the ROUND and TRUNC functions.

SELECT last_name, hire_date, ROUND(hire_date, ’MONTH’) RND_MON,

TRUNC(hire_date, ’MONTH’) TRNC_MON
FROM employees
WHERE TO_CHAR(hire_date,’DD-MON-YYYY’) LIKE ’%1997’;

When using the ROUND function with dates, the rules are as follows:

• When rounding to the closest year, round up July 1 and later dates.

• When rounding to the closest month, round up the 16th day of the month and later.

• When rounding to the nearest day, round up 12 noon and later times.

Oracle9i: SQL for End Users 4- 41

SYSDATE and DUAL

SYSDATE is a date function that returns the current date and time. It is customary to select SYSDATE
from a dummy table called DUAL.

Single-Row Functions

Single-row functions can manipulate:

• Conversion functions can convert character, date, and numeric values. Examples of conversion
functions are:

– TO_CHAR, TO_DATE, TO_NUMBER

• Date functions:

– MONTHS_BETWEEN, ADD_MONTHS, NEXT_DAY, LAST_DAY, ROUND, TRUNC

– Date values can also use arithmetic operators.

• Single-row functions can be used to convert character, date, and numeric values with various
conversion functions like TO_CHAR, TO_DATE, and TO_NUMBER. Single-row functions can be
nested to any level.

• Single-row functions can be nested to any depth. Nested functions are evaluated from the innermost
level to the outermost level.

4-41 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Use date and conversion functions to:
• Convert column data types during calculations

and display
• Perform calculations on data
• Modify individual data items
• Manipulate output for groups of rows
• Alter date formats for display
• Single-row functions can be nested to any depth

Oracle9i: SQL for End Users 4- 42

4-42 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 4 Overview

This practice covers the following topics:
• Using date functions to alter the display of dates
• Using SYSDATE in SELECT statements

• Using conversion functions to convert data from
one data type to another

Practice 4 Overview
This practice contains a variety of exercises using date and conversion functions in the SELECT
statement.

Note: Results of the practices will vary based on the value of SYSDATE.

Oracle9i: SQL for End Users 4- 43

Practice 4
1.Display the last name and hire date of all employees with the job ID IT_PROG. Display the hire

date as shown:

2. Determine the annual salary (excluding commission) and six-month review date for all employees
with the job ID ST_CLERK. Give the column an alias of REVIEW.

3.Display the last name and number of days between today and the start date for all employees with
the letter G as the first letter of their name.

Note: Results will vary based on the value of SYSDATE

4.Display the number of months that Taylor has been employed with the company. Give the column
an alias of MONTHS.

Note: Results will vary due to the changing value of SYSDATE.

Oracle9i: SQL for End Users 4- 44

Practice 4 (continued)

5. For employees in department 20, display the last name and hire date as shown. Specify the alias
as DATE_HIRED after your expression. Pay particular attention to the case used in the letters of
the hire date.

6. For employees in department 60, display each employee’s last name, hire date, and salary review
date. Assume that the review date is one year after the hire date. Give the review date column an
alias of REVIEW. Order the output in ascending order of hire date.

7. Display the last names of all employees who were hired after March 15, 1998. Use the date
format 03/15/1998.

Oracle9i: SQL for End Users 4- 45

Practice 4 (continued)
8. Create a single-column report that lists sales representatives (JOB_ID = ‘SA_REP’) and their

monthly salaries as shown in the following output. Pay particular attention to the case used in the
letters and the formatting of the salary amounts.

If you want an extra challenge, try the following exercises:

9. Display the date of the first Monday in the year 2001. Give the column the heading as Monday.

10. Display the last names and hire dates of all employees who have been with the company for
more than 10 years.

Note: The output will vary from year to year, depending on SYSDATE.

Oracle9i: SQL for End Users 4- 46

Practice 4 (continued)

11. Display the last name and hire date for all employees who were hired in 1987.

12. Display the last name and hire date for all employees whose job ID is ST_CLERK, starting with
the clerk who was hired first and ending with the clerk who was hired most recently.

13. Display the last name, hire date, hire date rounded to the MONTH, and hire date rounded to the
YEAR for employees with an employee ID is greater than 170. The column headings should be
as given below.

Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Data
from Multiple Tables

Oracle9i: SQL for End Users 5- 2

Lesson Aim

This lesson covers how to use different methods to obtain data from more than one table.

5-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Write SELECT statements using equality and

nonequality joins to access data from more than
one table

• Describe the Cartesian product
• Join a table to itself
• Join tables using SQL: 1999 Syntax

Oracle9i: SQL for End Users 5- 3

5-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Obtaining Data from Multiple Tables
EMPLOYEES DEPARTMENTS

…

…

Data from Multiple Tables

Sometimes you need to use data from more than one table. In the slide example, the report
displays data from two separate tables.

• Employee IDs exist in the EMPLOYEES table.

• Department IDs exist in both the EMPLOYEES and DEPARTMENTS tables.

• Department names exist in the DEPARTMENTS table.

To produce the report, you need to link the EMPLOYEES and DEPARTMENTS tables and access
data from both of them.

Oracle9i: SQL for End Users 5- 4

Joining Tables Using Oracle Syntax

When you require data from more than one table in the database, you use a join condition. Rows in one
table can be joined to rows in another table according to common values existing in corresponding
columns. Typically, when rows are joined using a common value, the column in the first table is a
primary key and the column in the second table is a foreign key.

To display data from two or more related tables, write a simple join condition in the WHERE clause. In
the syntax:

table.column Denotes the table and column from which data is retrieved

table1.column1 = Is the condition that joins (or relates) the tables together
table2.column2

This example of a join condition is called an equijoin. It is based on the value in one column of a table
being equal to the value in another table. Equijoins are discussed later in this lesson.

5-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Joining Tables Using Oracle Syntax

• Use a join to query data from more than one table:

• Write the join condition in the WHERE clause.

• Prefix the column name with the table name when
the same column name appears in more than one
table.

SELECT table1.column1, table2.column2
FROM table1, table2
WHERE table1.column1 = table2.column2;

Oracle9i: SQL for End Users 5- 5

Guidelines
• When writing a SELECT statement that joins tables, precede the column name with the table name

for clarity and to enhance database access.

• If the same column name appears in more than one table, the column name must be prefixed with
the table name. If this not done the Oracle server returns the error ORA-00918: column
ambiguously defined.

• To join n tables together, you need a minimum of n-1 join conditions. For example, to join four
tables, a minimum of three joins is required. This rule may not apply if your table has a
concatenated primary key, in which case more than one column is required to uniquely identify each
row.

For more information, see Oracle9i SQL Reference, “SELECT.”

.

Oracle9i: SQL for End Users 5- 6

Cartesian Product

When a join condition is invalid or omitted completely, the result is a Cartesian product in which all
combinations of rows are displayed. All rows in the first table are joined to all rows in the second table.

A Cartesian product tends to generate a large number of rows, and its result is rarely useful. You should
always include a valid join condition in a WHERE clause, unless you have a specific need to combine all
rows from all tables.

5-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Cartesian Product

• A Cartesian product is formed when:
– A join condition is omitted
– A join condition is invalid
– All rows in the first table are joined to all rows in the

second table

• To avoid a Cartesian product, always include a valid
join condition in a WHERE clause.

Oracle9i: SQL for End Users 5- 7

5-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Generating a Cartesian Product

Cartesian
product:

20x8=160 rows

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)

…

…

Cartesian Products (continued)

A Cartesian product is generated if a join condition is omitted. The example on the slide displays
employee last name and department name from the EMPLOYEES and DEPARTMENTS tables.
Because no WHERE clause has been specified, all rows (20 rows) from the EMPLOYEES table are
joined with all rows (8 rows) in the DEPARTMENTS table, thereby generating 160 rows in the
output.

SELECT last_name, department_name dept_name

FROM employees, departments;

Oracle9i: SQL for End Users 5- 8

Cartesian Products (continued)

…

Oracle9i: SQL for End Users 5- 9

Types of Joins

The Oracle9i database offers join syntax that is SQL: 1999 Compliant. Prior to the 9i release, the join
syntax was different from the ANSI standards. The new SQL: 1999 Compliant join syntax does not
offer any performance benefits over the Oracle proprietary join syntax that existed in prior releases.

5-9 Copyright © Oracle Corporation, 2001. All rights reserved.

• Equijoin
• Non-equijoin
• Outer join
• Self join

Types of Joins

• Cross joins
• Natural joins

SQL: 1999
Compliant Joins:

Oracle SQL
Joins (8i and prior):

Oracle9i: SQL for End Users 5- 10

5-10 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is an Equijoin?

EMPLOYEES Rows from the
DEPARTMENTS table

Foreign key Primary key

…

…

Equijoins
To determine an employee’s department name, you compare the value in the DEPARTMENT_ID
column in the EMPLOYEES table with the DEPARTMENT_ID values in the DEPARTMENTS
table. The relationship between the EMPLOYEES and DEPARTMENTS tables is an equijoin: that
is, values in the DEPARTMENT_ID column on both tables must be equal. Frequently, this type of
join involves primary and foreign key complements.

Note: Equijoins are also called simple joins or inner joins.

Oracle9i: SQL for End Users 5- 11

5-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Records with Equijoins

SELECT employees.employee_id, employees.last_name,
employees.department_id, departments.department_id,
departments.department_name

FROM employees, departments
WHERE employees.department_id = departments.department_id ;

…

Retrieving Records with Equijoins

In the slide example:

• The SELECT clause specifies the column names to retrieve:

– employee last name, employee ID, and department ID, which are columns in the
EMPLOYEES table

– department ID, and department name, which are columns in the DEPARTMENTS table

• The FROM clause specifies the two tables that the must be accessed:

– EMPLOYEES table

– DEPARTMENTS table

• The WHERE clause specifies how the tables are to be joined:

– EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID

Because the DEPARTMENT_ID column is common to both tables, it must be prefixed by the table
name to avoid ambiguity.

Oracle9i: SQL for End Users 5- 12

Qualifying Ambiguous Column Names
You need to qualify the names of the columns in the WHERE clause with the table name to avoid
ambiguity. Without the table prefixes, the DEPARTMENT_ID column could be from either the
DEPARTMENTS table or the EMPLOYEES table. It is necessary to add the table prefix to execute your
query.

If there are no common column names between the two tables, there is no need to qualify the columns.
However, using the table prefix improves performance, because you tell the Oracle Server exactly
where to find the columns.

The requirement to qualify ambiguous column names is also applicable to columns that may be
ambiguous in other clauses, such as the SELECT clause or the ORDER BY clause.

5-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Qualifying Ambiguous
Column Names

• Use table prefixes to qualify column names that are
in multiple tables.

• Improve performance by using table prefixes.
• Distinguish columns that have identical names but

reside in different tables by using column aliases.

Oracle9i: SQL for End Users 5- 13

5-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Additional Search Conditions
Using the AND Operator

EMPLOYEES DEPARTMENTS

…

…

Additional Search Conditions
In addition to the join, you may have to specify other criteria for your WHERE clause. For example,
to display only employee Matos’department number and department name, you need an additional
condition in the WHERE clause.

SELECT last_name, employees.department_id,
department_name

FROM employees, departments
WHERE employees.department_id = departments.department_id
AND last_name = ’Matos’;

Oracle9i: SQL for End Users 5- 14

5-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Additional Search Conditions
with a Join

SELECT employees.employee_id, employees.department_id,

departments.department_name

FROM employees, departments

WHERE employees.department_id = departments.department_id

AND employee_id = 100;

Using Additional Search Conditions with a Join

In the slide:

• The SELECT clause specifies the column names to retrieve:

– EMPLOYEE_ID, DEPARTMENT_ID which are columns in the EMPLOYEES table

– DEPARTMENT_NAME, which is a column in the DEPARTMENTS table

• The FROM clause specifies the two tables that must be accessed:

– EMPLOYEES table

– DEPARTMENTS table

• The WHERE clause specifies how the tables are to be joined and which rows to retrieve:

– EMPLOYEES.DEPARTMENT_ID=DEPARTMENTS.DEPARTMENT_ID

– EMPLOYEE_ID=100

The additional condition in the WHERE clause specifies employee whose
EMPLOYEE_ID = 100, as the employee whose data you want to retrieve.

Oracle9i: SQL for End Users 5- 15

5-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Additional Search Conditions
with a Join

SELECT last_name,job_id, employees.department_id,
departments.department_name

FROM employees, departments
WHERE employees.department_id=departments.department_id
AND job_id IN (’SA_REP’,’MK_REP’);

Using Additional Search Conditions with a Join

For example, to display the employee’s last name, job ID, department number, and department
name for the sales representatives and the marketing representatives, you need an additional
condition in the WHERE clause.

In the slide:

• The SELECT clause specifies the column names to retrieve:

– LAST_NAME, JOB_ID and DEPARTMENT_ID which are columns in the EMPLOYEES
table

– DEPARTMENT_NAME which is a column in the DEPARTMENTS table

• The FROM clause specifies the two tables that must be accessed.

– EMPLOYEES table

– DEPARTMENTS table

• The WHERE clause specifies how the tables are to be joined and which rows to retrieve:

– EMPLOYEES.DEPARTMENT_ID=DEPARTMENTS.DEPARTMENT_ID

– JOB_ID IN (’SA_REP’, ’MK_REP’)

The additional condition in the WHERE clause specifies the sales representatives and the marketing
representatives as the employees whose data you want to retrieve.

Oracle9i: SQL for End Users 5- 16

5-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Table Aliases

Simplify queries by using table aliases.

… can be written as ...

SELECT employees.employee_id, employees.last_name,

employees.department_id,departments.department_name

FROM employees, departments

WHERE employees.department_id = departments.department_id;

SELECT e.employee_id, e.last_name, e.department_id,

departments.department_name

FROM employees e, departments

WHERE e.department_id = departments.department_id;

Table Aliases

Qualifying column names with table names can be very time consuming, particularly if table
names are lengthy. You can use table aliases instead of table names. Just as a column alias gives a
column another name, a table alias gives a table another name. Table aliases help reduce SQL
code so that it uses less memory.

Notice how table aliases are identified in the FROM clause in the example. The table name is
specified in full, followed by a space and then the table alias. The EMPLOYEES table has the
alias e.

Guidelines

• Table aliases can be up to 30 characters in length, but the shorter they are the better.

• If a table alias is used for a particular table name in the FROM clause, that table alias
must be substituted for the table name throughout the SELECT statement. This is
particularly useful in cases when the table names are long.

• Table aliases should be meaningful.

• The table alias is valid only for the current SELECT statement.

• The use of aliases increases readability of the SQL code

• You cannot use the optional 'AS' keyword for table alias as in a column alias

Oracle9i: SQL for End Users 5- 17

5-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Table Aliases

SELECT e.last_name,

e.department_id, d.department_name

FROM employees e, departments d

WHERE e.department_id = d.department_id;

…

Using Table Aliases

The example in the slide uses table aliases to specify the tables from which data has to be
retrieved.

In the following example, notice the points:

• The same join condition is used as in the slide example but neither of the DEPARTMENT_ID
columns is actually retrieved in the SELECT list.

• The query retrieves data on employees who work in the accounting department by using the
additional condition in the WHERE clause

SELECT e.last_name,d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id
AND d.department_name = ’Accounting’;

Oracle9i: SQL for End Users 5- 18

5-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Joining More than Two Tables

LOCATIONS

DEPARTMENTS

• To join n tables together,
you need a minimum of
n-1 join conditions.

• For example, to join three
tables, a minimum of two
joins is required.

EMPLOYEES

…

Additional Search Conditions

Sometimes you may need to join more than two tables. For example, to display the last name, the
department name, and the city for each employee, you have to join the EMPLOYEES,
DEPARTMENTS, and LOCATIONS tables.

SELECT e.last_name, d.department_name, l.city
FROM employees e, departments d, locations l
WHERE e.department_id = d.department_id
AND d.location_id = l.location_id;

…

Oracle9i: SQL for End Users 5- 19

5-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Non-Equijoins

EMPLOYEES JOB_GRADES

salary in the EMPLOYEES
table must be between
lowest salary and highest
salary in the JOB_GRADES
Table.

…

Non-Equijoins

A non-equijoin is a join condition containing something other than an equality operator.

The relationship between the EMPLOYEES table and the JOB_GRADES table is an example of a
non-equijoin. A relationship between the two tables is that the SALARY column in the
EMPLOYEES table must be between the values in the LOWEST_SALARY and
HIGHEST_SALARY columns of the JOB_GRADES table. The relationship is obtained using an
operator other than equals (=).

Oracle9i: SQL for End Users 5- 20

5-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Records with Nonequijoins

SELECT e.last_name, e.salary, j.grade_level

FROM employees e, job_grades j
WHERE e.salary

BETWEEN j.lowest_sal AND j.highest_sal;

…

Nonequijoins (continued)

The example in the slide creates a nonequijoin to evaluate an employee’s job grade. The salary
must be between any pair of the low and high salary ranges in the JOB_GRADES table.

It is important to note that all employees appear exactly once when this query is executed. No
employee is repeated in the list. There are two reasons for this:

• None of the rows in the JOB_GRADES table contain grades that overlap. That is, the salary
value for an employee must lie between the low salary and high salary values of one of the
rows in the JOB_GRADES table.

• All of the employees’ salaries lie within the limits provided by the JOB_GRADES table. That
is, no employee earns less than the lowest value contained in the LOWEST_SAL column or
more than the highest value contained in the HIGHEST_SAL column.

Note: Other operators such as <= and >= could be used, but BETWEEN is the simplest.
Remember to specify the low value first and the high value last when using BETWEEN. Table
aliases have been specified for performance reasons, not because of possible ambiguity.

Oracle9i: SQL for End Users 5- 21

5-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Multiple Joins

SELECT e.last_name, e.department_id,
d.department_name, e.salary, j.grade_level

FROM employees e, departments d, job_grades j

WHERE e.department_id=d.department_id
AND e.salary BETWEEN j.lowest_sal and j.highest_sal ;

…

Joining More Than Two Tables (continued)

In the slide:

• The SELECT clause specifies the column names to retrieve:

– LAST_NAME, DEPARTMENT_ID, and SALARY, which are columns in the
EMPLOYEES table

– DEPARTMENT_NAME, which is a column in the DEPARTMENTS table

– GRADE_LEVEL, which is a column in the JOB_GRADES table

• The FROM clause specifies the three tables that must be accessed:

– EMPLOYEES table (alias E)

– DEPARTMENTS table (alias D)

– JOB_GRADES (alias J)

• The WHERE clause specifies how the tables are to be joined:

– E.DEPARTMENT_ID=D.DEPARTMENT_ID

– E.SALARY BETWEEN J.LOWEST_SAL AND J.HIGHEST_SAL

Note: The number of joins must at least equal the number of tables minus one.

Oracle9i: SQL for End Users 5- 22

5-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Self Joins

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)

MANAGER_ID in the WORKER table is equal to
EMPLOYEE_ID in the MANAGER table.

…

Joining a Table to Itself

Sometimes you need to join a table to itself. This type of a join is called as self join. To find the
name of each employee’s manager, you need to join the EMPLOYEES table to itself, or perform a
self join. For example, to find the name of Whalen’s manager, you need to:

• Find Whalen in the EMPLOYEES table by looking at the LAST_NAME column.

• Find the manager number for Whalen by looking at the MANAGER_ID column. Whalen’s
manager number is 101.

• Find the name of the manager with EMPLOYEE_ID 101 by looking at the LAST_NAME
column. Kochhar’s employee number is 101, so Kochhar is Whalen’s manager.

In this process, you look in the table twice. The first time you look in the table to find Whalen in
the LAST_NAME column and MANAGER_ID value of 101. The second time you look in the
EMPLOYEE_ID column to find 101 and the LAST_NAME column to find Kochhar.

Oracle9i: SQL for End Users 5- 23

5-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Joining a Table to Itself

SELECT worker.last_name || ’ works for ’

|| manager.last_name

FROM employees worker, employees manager
WHERE worker.manager_id = manager.employee_id ;

…

Joining a Table to Itself (continued)
The slide example joins the EMPLOYEES table to itself. To simulate two tables in the FROM
clause, there are two aliases, namely worker and manager, for the same table, EMPLOYEES.

In this example, the WHERE clause contains the join that means “where a worker’s manager
number matches the employee number for the manager.”

Oracle9i: SQL for End Users 5- 24

5-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Joining Tables Using SQL: 1999 Syntax

Use a join to query data from more than one table.

SELECTtable1.column, table2.column

FROM table1

[CROSS JOIN table2] |

[NATURAL JOIN table2] |

[JOIN table2 USING (column_name)] |

[JOIN table2

ON(table1.column_name = table2.column_name)] |

[LEFT|RIGHT|FULL OUTER JOIN table2

ON (table1.column_name = table2.column_name)];

Defining Joins

Using the SQL: 1999 syntax, you can obtain the same results as in the prior pages.

In the syntax:

table1.column Denotes the table and column from which data is retrieved

CROSS JOIN Returns a cartesian product from the two tables

NATURAL JOIN Joins two tables based on the same column name

JOIN table

USING column_name Performs an equi-join based on the column_name

JOIN table ON

table1.column_name Performs an equi-join based on the condition in the ON
= table2.column_name
clause LEFT/RIGHT/FULL
OUTER

For more information, see Oracle SQL Reference, “SELECT.”

Oracle9i: SQL for End Users 5- 25

5-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Cross Joins

• The CROSS JOIN clause produces the
cross-product of two tables.

• This is the same as a Cartesian product between the
two tables.

SELECT last_name, department_name
FROM employees
CROSS JOIN departments ;

…

Creating Cross Joins

The above example gives the same results as the following:
SELECT last_name, department_name

FROM employees, departments;

…

Oracle9i: SQL for End Users 5- 26

5-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Natural Joins

• The NATURAL JOIN clause is based on all columns
in the two tables that have the same name.

• It selects rows from the two tables that have equal
values in all matched columns.

• If the columns having the same names have
different data types then an error is returned.

Creating Natural Joins

It was not possible to do a join without explicitly specifying the columns in the corresponding tables in
prior releases of Oracle. In Oracle9i it is possible to let the join be completed automatically based on
columns in the two tables which have matching data types and names, using the keywords NATURAL
JOIN.

Note: The join can only happen on columns having the same names and data types in both the tables. If
the columns have the same name, but different data types, then the NATURAL JOIN
syntax will cause an error.

Oracle9i: SQL for End Users 5- 27

5-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Records with Natural Joins

SELECT department_id, department_name,
location_id, city

FROM departments
NATURAL JOIN locations ;

Retrieving Records with Natural Joins
In the above example the LOCATIONS table is joined to the DEPARTMENT table by the
LOCATION_ID column, which is the only column of the same name in both tables. If other
common columns were present then the join would have used them all.

Equijoins

The natural join can also be written as an equijoin:

SELECT department_id, department_name,

departments.location_id, city

FROM departments, locations

WHERE departments.location_id = locations.location_id;

Oracle9i: SQL for End Users 5- 28

5-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

• Prefix the column name with the table name or alias if
the same column name appears in more than one table

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column1 = table2.column2;

Equijoin Nonequijoin Selfjoin

• Cross joins
• Natural joins

SQL: 1999 Compliant Joins

Summary

There are many ways to join tables. The common thread is to link them through a condition in the
WHERE clause. The method you choose is based on the required result and the data structures you are
using. Omission of the WHERE clause results in a Cartesian product, which displays all combinations of
rows.

SELECT table1.column, table2.column

FROM table1, table2

WHERE table1.column1 = table2.column2;

Table Aliases

• Table aliases speed up database access.

• Table aliases can help keep SQL code smaller, therefore conserving memory.

Types of Joins

• Equijoin

• Non-equijoin

• Outer join

• Self join

Using the SQL: 1999 joins, you can obtain the same results from more than one table

• Cross joins

• Natural joins

Oracle9i: SQL for End Users 5- 29

5-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 5 Overview

This practice covers the following topics:
• Joining tables by using an equijoin
• Performing selfjoins
• Adding additional conditions

Practice 5 Overview

This practice is intended to give you practical experience in extracting data from more than one table
by joining and restricting rows in the WHERE clause.

Oracle9i: SQL for End Users 5- 30

Practice 5

1. Display the last name, department ID, and department name of all employees, in department
name order.

2. Display the last name, salary, and department name of all employees who earn more than
$10,000.

Oracle9i: SQL for End Users 5- 31

Practice 5 (continued)

3. Display the last name, salary, and department name for all employees in the accounting
department.

4. Display the last name, job, department name, and location ID for all employees whose office has
the location ID 1400.

5. Display a list of employees including last name, job, salary, and grade level.

Oracle9i: SQL for End Users 5- 32

Practice 5 (continued)

6. Using question 5, show only employees in grade C.

7. For employees in department 20, display the last name, department ID, the name of the employee’s
manager and department ID of their manager.

8. Find all employees who joined the company before their manager.

Oracle9i: SQL for End Users 5- 33

Practice 5 (continued)

If you want an extra challenge, try the following exercises:

9. For each employee, display the last name, the last name of the employee’s manager and the
manager’s department name.

Oracle9i: SQL for End Users 5- 34

Practice 5 (continued)

10. Display the last name and the last name of the manager for all employees who work in the same
department as their manager.

11. Display the employee ID, last name, department ID, department name,and city for all
employees whose last names begin with H.

Copyright © Oracle Corporation, 2001. All rights reserved.

Aggregating Data
by Using Group Functions

Oracle9i: SQL for End Users 6- 2

Lesson Aim

This lesson further addresses functions. It focuses on obtaining summary information, such as
averages, for groups of rows. It also discusses how to group rows in a table into smaller sets.

6-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to:
• Identify the available group functions
• Describe the use of group functions
• Use the GROUP BY clause to group data

Oracle9i: SQL for End Users 6- 3

6-3 Copyright © Oracle Corporation, 2001. All rights reserved.

What Are Group Functions?

Group functions operate on sets of rows to give one
result per group.

EMPLOYEES

The maximum
salary in

the EMPLOYEES
table.

…

Group Functions

Unlike single-row functions, group functions operate on sets of rows to give one result per group.
These sets may be the whole table or the table split into groups.

Oracle9i: SQL for End Users 6- 4

Group Functions

Each of the functions accepts an argument. The following table identifies the options that you can use in
the syntax.

6-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Group Functions

• AVG
• COUNT
• MAX
• MIN
• SUM

Function Description
AVG([DISTINCT|ALL]n) Average value of n, ignoring null values

COUNT({*|[DISTINCT|ALL]
expr})

Number of rows, where expr evaluates to something other
than null; count all selected rows using *, including
duplicates and rows with nulls

MAX([DISTINCT|ALL]expr)

Maximum value of expr, ignoring null values

MIN([DISTINCT|ALL]expr) Minimum value of expr, ignoring null values
SUM([DISTINCT|ALL]n) Sum values of n, ignoring null values

Oracle9i: SQL for End Users 6- 5

Guidelines for Using Group Functions
• DISTINCT makes the function consider only nonduplicate values; ALL makes it consider every

value including duplicates. The default is ALL.

• The data types for the arguments can be CHAR, VARCHAR2, NUMBER, or DATE.

• All group functions except COUNT(*) ignore null values. To substitute a value for null values,
use the NVL function.

6-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Using Group Functions

Many aggregate functions accept these options:
• DISTINCT
• ALL
• NVL

Oracle9i: SQL for End Users 6- 6

6-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the AVG and SUM Functions

You can use AVG and SUM for numeric data.

SELECT AVG(salary) , SUM(salary)
FROM employees
WHERE job_id = ’ST_CLERK’;

Using the AVG and SUM Functions

You can use AVG and SUM functions against columns that can store numeric data. The example in
the slide uses the AVG and SUM functions to display the average salary and sum of monthly
salaries for all clerks.

Note: You can use AVG and SUM functions only with numeric data types.

Oracle9i: SQL for End Users 6- 7

6-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the MIN and MAX Functions

You can use MIN and MAX for any data type.

SELECT TO_CHAR(MIN(hire_date),’DD-MON-YYYY’),

TO_CHAR(MAX(hire_date),’DD-MON-YYYY’)

FROM employees;

Using MIN and MAX Functions with Dates and Character Data Types

You can use MAX and MIN functions for any data type. The example in the slide uses the MAX
and MIN functions with date data types to display the hire dates of the most junior and most senior
employee.

The following example displays the names of the first and last employees in an alphabetized list of
all employees:

SELECT MIN(last_name), MAX(last_name)
FROM employees;

Oracle9i: SQL for End Users 6- 8

6-8 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT MIN(salary) AS "Lowest Salary",

MAX(salary) AS "Highest Salary"
FROM employees;

Using the MIN and MAX Functions

You can use MIN and MAX for any data type.

Using the MIN and MAX Functions with Numeric Data

The example in the slide displays the lowest and the highest salary paid to an employee.

The following example displays the lowest salary boundary and highest salary boundary for
employees:

SELECT MIN(salary) AS "Lowest Salary",
MAX(salary) AS "Highest Salary"

FROM employees;

Oracle9i: SQL for End Users 6- 9

6-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the COUNT Function

SELECT COUNT(*)

FROM employees

WHERE department_id = 20;

COUNT(*) returns the number of rows in a query.

Using the COUNT Function

The COUNT function has two formats:

• COUNT(*): Returns the number of rows in a query, including duplicate rows and rows
containing null values.

• COUNT(expr): Returns the number of nonnull rows in the column identified by expr.

The example in the slide uses COUNT(*) to display the number of employees in department 20.

The following example displays the total number of employees and the total number of managers
in the EMPLOYEES table. Observe that the total number of managers is 19, because the employee
with the employee ID 100 does not have a manager (that is does not have a value in the
MANAGER_ID column).

SELECT COUNT(*), COUNT(manager_id)
FROM employees;

Oracle9i: SQL for End Users 6- 10

6-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the COUNT Function

COUNT(expr) returns the number of nonnull rows.

SELECT COUNT(commission_pct)

FROM employees

WHERE department_id = 80;

Using the COUNT Function (continued)

The example in the slide displays the number of employees in department 80 who can earn a
commission. The following example displays the number of departments in the EMPLOYEES
table:

The following example displays the number of distinct departments in the EMPLOYEES table:

SELECT COUNT(department_id)
FROM employees;

SELECT COUNT(DISTINCT(department_id)) AS "Working Depts"
FROM employees;

Oracle9i: SQL for End Users 6- 11

6-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Group Functions and Null Values

Group functions ignore null values in the column.

SELECT AVG(commission_pct)
FROM employees;

Group Functions and Null Values
All group functions except COUNT(*) ignore null values in the column. In the example in the
slide, the average is calculated based only on the rows in the table where a valid value is stored in
the COMMISSION_PCT column. The average is calculated as total commission being paid to all
employees divided by the number of employees receiving commission.

There are four employees who receive commission.

Oracle9i: SQL for End Users 6- 12

6-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NVL Function
with Group Functions

The NVL function forces group functions to include
null values.

SELECT AVG(NVL(commission_pct,0))
FROM employees;

Group Functions and Null Values (continued)
The NVL function forces group functions to include null values. In the example in the slide, the
average is calculated based on all rows in the table regardless of whether null values are stored in
the COMMISSION_PCT column. The average is calculated as total commission being paid to all
employees divided by the total number of employees in the company, which is 20.

Oracle9i: SQL for End Users 6- 13

6-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NVL Function
with Group Functions

Average commission for all people hired in 1999

SELECT AVG(NVL(commission_pct,0))
FROM employees
WHERE hire_date
BETWEEN TO_DATE(’01-JAN-1999’,’DD-MON-YYYY’)
AND TO_DATE(’31-DEC-1999’,’DD-MON-YYYY’);

Group Functions and Null Values (continued)

The example in the slide calculates the average commission paid to employees who were hired in
1999, regardless of whether null values are stored in the COMMISSION_PCT column. The
average is calculated as total commission being paid to all employees hired in 1999 (0.15) divided
by the total number of employees who were hired in 1999, which is 1.

Oracle9i: SQL for End Users 6- 14

6-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Groups of Data

EMPLOYEES

The
average
salary

in
EMPLOYEES

table
for each

department

4400

…

9500

3500

6400

10033

Groups of Data

Until now, all group functions have treated the table as one large group of information. At times,
you need to divide the table of information into smaller groups. This can be done by using the
GROUP BY clause.

Oracle9i: SQL for End Users 6- 15

6-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Groups of Data:
GROUP BY Clause

Use the GROUP BY clause to divide rows in a table into
smaller groups.

SELECT column, group_function
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];

The GROUP BY Clause

You can use the GROUP BY clause to divide the rows in a table into groups. You can then use the
group functions to return summary information for each group.

In the syntax:

group_by_expression: Specifies columns whose values determine the basis for
grouping rows

Guidelines

• If you include a group function in a SELECT clause, you cannot select individual results as
well unless the individual column appears in the GROUP BY clause. You will receive an
error message if you fail to include the column list.

• You can use a WHERE clause to exclude rows before dividing them into groups.

• You must include the columns in the GROUP BY clause.

• You cannot use a column alias in the GROUP BY clause.

• By default, rows are sorted by ascending order of the columns included in the GROUP BY
list. You can override this by using the ORDER BY clause.

Oracle9i: SQL for End Users 6- 16

6-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the GROUP BY Clause

All columns in the SELECT list that are not in group
functions must be in the GROUP BY clause.

SELECT department_id, AVG(salary)
FROM employees
GROUP BY department_id ;

Using the GROUP BY Clause

When using the GROUP BY clause, make sure that all columns in the SELECT list that are not in
the group functions are included in the GROUP BY clause. The example in the slide displays the
department ID and average salary for each department. Here is how the statement is evaluated:

• The SELECT clause specifies the columns to be retrieved:

– Department ID column in the EMPLOYEES table

– The average of all the salaries in the group you specified in the GROUP BY clause

• The FROM clause specifies the tables that the database must access: the EMPLOYEES table.

• The WHERE clause specifies the rows to be retrieved. Because there is no WHERE clause, by
default all rows are retrieved.

• The GROUP BY clause specifies how the rows should be grouped. Because the rows are
being grouped by department ID, the AVG function that is being applied to the salary column
calculates the average salary for each department.

Oracle9i: SQL for End Users 6- 17

6-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the GROUP BY Clause

The GROUP BY column does not have to be in the
SELECT list.

SELECT AVG(salary)
FROM employees
GROUP BY department_id ;

Using the GROUP BY Clause (continued)

The GROUP BY column does not have to be in the SELECT clause. For example, the SELECT
statement in the slide displays the average salary for each department without displaying the
respective department ids. However, without the department ids, the results do not look
meaningful.

Oracle9i: SQL for End Users 6- 18

6-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the GROUP BY Clause

Display the number of people in each department.

SELECT department_id, COUNT(*)
AS "Dept Employees"

FROM employees
GROUP BY department_id;

Using the GROUP BY Clause (continued)

The example in the slide above displays the number of employees who work in each department.
As in the example on the previous slide, the DEPARTMENT_ID column is not required in the
SELECT list, but it makes the output clear and meaningful.

The following example displays the lowest and highest salary for each job title:

SELECT job_id, MIN(salary), MAX(salary)
FROM employees
GROUP BY job_id;

…

Oracle9i: SQL for End Users 6- 19

6-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Group Function in the
ORDER BY Clause

SELECT department_id, AVG(salary)

FROM employees
GROUP BY department_id

ORDER BY AVG(salary);

Using Group Functions in the ORDER BY Clause

You can use group functions in the ORDER BY clause to order the output of the groups that are
displayed. In the example in the slide, the report displays the average salary for each department in
ascending order.

In the following example, the report displays the maximum salary in each department. The output
is ordered by the maximum salary amounts from lowest to highest:

SELECT department_id, MAX(salary)
FROM employees
GROUP BY department_id
ORDER BY MAX(salary);

Oracle9i: SQL for End Users 6- 20

Using Group Functions in the ORDER BY Clause (continued)

Oracle9i: SQL for End Users 6- 21

6-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Illegal Queries
Using Group Functions

Any column or expression in the SELECT list that is not
an aggregate function must be in the GROUP BY
clause.

SELECT department_id, COUNT(last_name)
FROM employees;

Column m
issing in

 th
e GR

OU
P
BY

clause

Illegal Queries Using Group Functions
Whenever you use a mixture of individual items (DEPARTMENT_ID) and group functions
(COUNT) in the same SELECT statement, you must include a GROUP BY clause that specifies
the individual items (in this case, DEPARTMENT_ID). If the GROUP BY clause is missing, the
error message "not a single-group group function" appears and an asterisk (*) points to the
offending column. You can correct the error by adding the GROUP BY clause.

SELECT department_id, COUNT(last_name)
FROM employees
GROUP BY department_id;

Oracle9i: SQL for End Users 6- 22

Illegal Queries Using Group Functions (continued)

Oracle9i: SQL for End Users 6- 23

6-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

SELECT column, group_function
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];

Summary

Group functions available in SQL include:

• AVG

• COUNT

• MAX

• MIN

• SUM

Use the GROUP BY clause to create subgroups.

Oracle Server evaluates the clauses in the following order:

• If the statement contains a WHERE clause, the server establishes the candidate rows.

• The server identifies the groups specified in the GROUP BY clause.

Oracle9i: SQL for End Users 6- 24

6-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 6 Overview

This practice covers the following topics:
• Showing different queries that use group functions
• Grouping by rows to achieve more than one result

Practice 6 Overview

At the end of this practice, you should be familiar with using group functions.

Note: Column aliases are used for the queries.

Oracle9i: SQL for End Users 6- 25

Practice 6

1. Determine the validity of the following statements. Circle either True or False.

a. Group functions work across many rows to produce one result.

True/False

b. Group functions include nulls in calculations.

True/False

2. Find the earliest hire date of an employee.

3. Find the highest salary paid to an employee.

4. Find the total monthly salary paid to all clerks.

5. Display the maximum salary, the minimum salary, and the difference between them for staff who
were hired in 1999.

6. Find the minimum, average, and maximum salaries of all employees.

Oracle9i: SQL for End Users 6- 26

Practice 6 (continued)

7. Display the minimum and maximum salary for each job ID.

If you want an extra challenge, try the following exercises:

8. Determine the number of managers without listing them.

Note: Think about the MANAGER_ID column rather than the JOB_ID column when
determining the number of managers

Oracle9i: SQL for End Users 6- 27

Practice 6 (continued)

9. Find the average monthly salary and average annual income for each job ID. Remember that
only sales people earn commission.

10. Display the department ID and the total number of employees working for each department.
Order the results in the descending order of the number of employees in each department.

Oracle9i: SQL for End Users 6- 28

Notes Page

Oracle9i: SQL for End Users 6- 29

Notes Page

Oracle9i: SQL for End Users 6- 30

Copyright © Oracle Corporation, 2001. All rights reserved.

Writing Subqueries

Oracle9i: SQL for End Users 7- 2

Lesson Aim
In this lesson you will learn about more advanced features of the SELECT statement. You can write
subqueries in the WHERE clause of another SQL statement to obtain values based on an unknown
conditional value. This lesson covers single-row subqueries and multiple-row subqueries.

7-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the types of problems that subqueries

can solve
• Define subqueries
• List the types of subqueries
• Write single-row and multiple-row subqueries

Oracle9i: SQL for End Users 7- 3

7-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Subquery
to Solve a Problem

Who has a salary greater than Hartstein’s?

Which employees have a salary greater
than Hartstein’s salary?

Main Query

What is Hartstein’s salary?

Subquery

?

?

Using a Subquery to Solve a Problem

Suppose that you want to write a query to find out who earns a salary greater than Hartstein’s
salary. To solve this problem, you need two queries: one query to find out what Hartstein earns
and a second query to find out who earns more than that amount.

You can solve this problem by combining the two queries, placing one query inside the other
query.

An inner query, or subquery, returns a value that is used by the outer query or main query. Using a
subquery is equivalent to performing two sequential queries and using the result of the first query
as the search value in the second query.

Oracle9i: SQL for End Users 7- 4

7-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Subqueries

• The subquery (inner query) executes once before
the main query.

• The result of the subquery is used by the main
query (outer query).

SELECT select_list
FROM table
WHERE expr operator

(SELECT select_list
FROM table);

Oracle9i: SQL for End Users 7- 5

7-5 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name
FROM employees
WHERE salary >

(SELECT salary
FROM employees
WHERE last_name=’Hartstein’);

Using a Subquery

“Who has a salary greater than Hartstein’?”

13000

Subqueries
A subquery is a SELECT statement that is embedded in a clause of another SELECT statement.

In the syntax:

operator Includes a comparison operator such as >, =, or IN

Note: Comparison operators fall into two classes: single-row operators (>, =, >=, <, <>, <=) and
multiple-row operators (IN, ANY, ALL).

The subquery is often called a nested SELECT, sub-SELECT, or inner SELECT statement. The
subquery generally executes first, and its output is used to complete the query condition for the
main or outer query.

Oracle9i: SQL for End Users 7- 6

Guidelines for Using Subqueries

• You must enclose a subquery in parentheses.

• A subquery should appear on the right side of the comparison operator.

• You must use a single row-operator with a single-row subquery

7-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Using Subqueries

• Enclose subqueries in parentheses.
• Place subqueries on the right side of the

comparison operator.
• Use single-row operators with single-row

subqueries.

Oracle9i: SQL for End Users 7- 7

Types of Subqueries
• Single-row subqueries return only one row from the inner SELECT statement.

• Multiple-row subqueries return more than one row from the inner SELECT statement.

7-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Subqueries

• Single-row subquery

• Multiple-row subquery

Main query

Subquery
returns

ST_CLERK

ST_CLERK
IT_PROG

Main query

Subquery
returns

Oracle9i: SQL for End Users 7- 8

7-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Single-Row Subqueries

• Return only one row
• Use single-row comparison operators

Operator

=

>

>=

<

<=

<>

Meaning

Equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

Not equal to

Single-Row Subqueries
A single-row subquery returns one row from the inner SELECT statement. This type of subquery
uses a single-row operator as listed in the slide

The following example displays the employees whose job ids are the same as that of employee 103:

SELECT last_name, job_id

FROM employees

WHERE job_id =

(SELECT job_id

FROM employees

WHERE employee_id = 103);

Oracle9i: SQL for End Users 7- 9

7-9 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, department_id
FROM employees
WHERE department_id =

(SELECT department_id
FROM employees
WHERE last_name=’King’);

Executing Single-Row Subqueries

Who works in the same department as King?

90

Using a Subquery

In the slide, the inner query determines the department number in which King works. The outer
query takes the result of the inner query and uses it to display all the employees who work in the
same department.

Oracle9i: SQL for End Users 7- 10

7-10 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, manager_id
FROM employees
WHERE manager_id =

(SELECT manager_id
FROM employees
WHERE last_name=’Ernst’);

Executing Single-Row Subqueries

Who has the same manager as Ernst?

103

Using a Subquery (continued)

In the example in the slide, the inner query determines the manager of Ernst. The outer query takes
the result of the inner query (the employee ID of Ernst’s manager) and uses this result to display
all the employees who have the same manager as Ernst.

The following example finds the employees who have been in the organization longer than
employee with the EMPLOYEE_ID = 103 (Hunold):

SELECT last_name
FROM employees
WHERE hire_date <

(SELECT hire_date
FROM employees
WHERE employee_id = 103);

Oracle9i: SQL for End Users 7- 11

7-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Executing Single-Row Subqueries

Who has the same job as employee 176 and earns
a higher salary than employee 143?

SA_REP

2600

SELECT last_name, job_id,salary
FROM employees
WHERE job_id =

(SELECT job_id
FROM employees
WHERE employee_id = 176)

AND salary > (SELECT salary
FROM employees
WHERE employee_id = 143);

Executing Single-Row Subqueries

The example in the slide displays employees whose job ID is the same as that of employee 176
and whose salary is greater than that of employee 143.

A SELECT statement can be considered as a query block. The example consists of three query
blocks: the outer query and two inner queries. The inner query blocks are executed first, producing
the query results: SA_REP and 2600, respectively. The outer query block then uses those values to
complete its search conditions.

Because the inner queries return single values (SA_REP and 2600, respectively), this SQL
statement is called a single-row subquery.

Oracle9i: SQL for End Users 7- 12

7-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Group Functions
in a Subquery

Display all employees who earn the minimum salary.

2500
SELECT last_name, job_id, salary
FROM employees
WHERE salary =

(SELECT MIN(salary)
FROM employees);

Using Group Functions in a Subquery

You can display data from a main query by using a group function in a subquery to return a single
row. You place the subquery in parentheses and after the comparison operator.

The example in the slide displays the last name, job ID, and salary of all employees whose salary
is equal to the minimum salary. The MIN group function returns a single value (2500) to the outer
query.

The following example displays the employees who earn a salary greater than the average salary
of a AD_VP:

SELECT last_name, job_id, salary
FROM employees
WHERE salary >

(SELECT AVG(salary)
FROM employees
WHERE job_id=’AD_VP’);

Oracle9i: SQL for End Users 7- 13

7-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Will This Statement Work?

SELECT last_name, job_id
FROM employees
WHERE job_id =

(SELECT job_id
FROM employees
WHERE last_name =’Smythe’);

Subquery returns no values

Errors in Subqueries (continued)

Another common error in subqueries is no rows being returned by the inner query.

In the SQL statement in the slide, the subquery contains a WHERE (LAST_NAME=’Smythe’)
clause. Presumably, the intention is to find the employee whose last name is Smythe. The
statement seems to be correct but selects no rows when executed.

There is no employee with the last name as Smythe. So the subquery returns no rows. The outer
query takes the result of the subquery and uses it in its WHERE clause.

Oracle9i: SQL for End Users 7- 14

7-14 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is Wrong
with This Statement?

SELECT employee_id, last_name
FROM employees
WHERE salary =

(SELECT MIN(salary)
FROM employees
GROUP BY department_id);

Sin
gle-

ro
w o

per
at

or w
ith

 m
ulti

ple-
ro

w su
bquer

y

Errors in Subqueries

One common error in subqueries is more than one row returned for a single-row subquery. In the
SQL statement in the slide, the subquery contains a GROUP BY (DEPARTMENT_ID) clause,
which implies that the subquery will return multiple rows, one for each group it finds. In this case,
the result of the subquery is 4400,6000,2500,4200,8600,7000,17000, and 8300.

The outer query takes the results of the subquery (4400,6000,2500,4200,8600,7000,17000, and
8300) and uses these results in its WHERE clause. The WHERE clause contains an equal (=)
operator, a single-row comparison operator expecting only one value. The = operator cannot
accept more than one value from the subquery and therefore generates the error.

Oracle9i: SQL for End Users 7- 15

7-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Multiple-Row Subqueries

• Multiple-row subqueries return more than one row.
• Use the IN multiple-row comparison operator to

compare an expression to any member in the list
that a subquery returns.

Multiple-Row Subqueries

Subqueries that return more than one row are called multiple-row subqueries. You use a multiple-row
operator, instead of a single-row operator, with a multiple-row subquery. The multiple-row operator
expects one or more values. This lesson deals with the IN multiple-row comparison operator. There are
two other multiple-row comparison operators, ANY and ALL, which are covered in other Oracle SQL
courses.

Oracle9i: SQL for End Users 7- 16

7-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Group Functions in a Multiple-Row
Subquery

Display all employees who earn the same salary as the
maximum salary for each department.

SELECT last_name, salary, department_id
FROM employees
WHERE salary IN

(SELECT MAX(salary)
FROM employees
GROUP BY department_id);

4400,13000,5800,9000,11000,24000,12000

…

Using Group Functions in a Multiple-Row Subquery

The example in the slide displays the employees who earn the same salary as the maximum salary
for the departments.The inner query is executed first, producing a result that contains eight rows:
4400,13000,5800,9000,11000,24000, 12000,and 7000. These numbers represent the highest salary
in each department. The main query block then uses the values returned by the inner query to
complete its search condition. In fact, the main query would look like the following to the Oracle
server:

SELECT last_name, salary, department_id
FROM employees
WHERE salary IN (4400,13000,5800,9000,11000,24000,12000,7000);

Oracle9i: SQL for End Users 7- 17

7-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Group Functions in a
Multiple-Row Subquery

Display the employees who were hired on the same
date as the longest serving employee in any
department.

SELECT last_name, salary, department_id,
TO_CHAR(hire_date,’DD-MON-YYYY’)HIREDATE

FROM employees
WHERE hire_date IN

(SELECT MIN(hire_date)
FROM employees
GROUP BY department_id);

…

Using Group Functions in a Multiple-Row Subquery (continued)

The example in the slide displays the employees who were hired on the same date as the longest
serving employee in any department.

The inner query is executed first, producing a result that contains eight rows: 17-SEP-87,17-FEB-
96, 17-OCT-95,03-JAN-90,11-MAY-96,17-JUN-87, 07-JUN-94 and 24-MAY-99. These dates
represent the hire dates of the first employees in each department. The main query block then uses
the values returned by the inner query to complete its search condition. In fact, the main query
would look like the following to the Oracle Server:
SELECT last_name, salary, department_id, hire_date
FROM employees
WHERE hire_date IN (’17-SEP-87’,’17-FEB-96’,’17-OCT-95’,

’03-JAN-90’,’11-MAY-96’,’17-JUN-87’,
’07-JUN-94’, ’24-MAY-99’);

Oracle9i: SQL for End Users 7- 18

7-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Subqueries are useful when a query is based on
unknown values.

SELECT select_list
FROM table
WHERE expr operator

(SELECT select_list
FROM table);

Summary
A subquery is a SELECT statement that is embedded in a clause of another SQL statement.
Subqueries are useful when a query is based on unknown criteria.

Subqueries have the following characteristics:

• Can pass one row of data to a main statement that contains a single-row operator, such as =,
<>, >, >=, <, or <=

• Can pass multiple rows of data to a main statement that contains a multiple-row operator,
such as IN

• Are processed first by the Oracle server, and the WHERE clause uses the results

• Can contain group functions

Oracle9i: SQL for End Users 7- 19

7-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 7 Overview

This practice covers creating subqueries to query
values based on unknown criteria.

Practice 7 Overview
This practice gives you experience in using nested SELECT statements in complex queries. You may
want to consider creating the inner query first for these questions. Make sure that it runs and produces
the data you expect before coding the outer query.

Oracle9i: SQL for End Users 7- 20

Practice 7

1. Answer the following questions:

a. Which query runs first with a subquery?

b. You cannot use the equal operator if the inner query returns more than one value.

True/False

i. If the answer is true, why, and what operator should be used?

ii. If the answer is false, why?

2. Display the last name, manager ID, and salary for all employees in the same department as
Matos.

3. Display the employee ID, last name, and salary for all employees with a salary above the average
salary.

Oracle9i: SQL for End Users 7- 21

Practice 7 (continued)

4. Display the last name and salary for all employees who have the same manager as Zlotkey.

5. Find the employees who earn the same salary as the highest salary in each job ID. Sort in the
descending order of salary.

Oracle9i: SQL for End Users 7- 22

Practice 7 (continued)

6. Find the employees who earn the same salary as the lowest salary for a job. Sort in the ascending
order of salary.

7. Display all the employees who have worked longer than Gietz.

Oracle9i: SQL for End Users 7- 23

Practice 7 (continued)

If you want an extra challenge, try the following exercises:

8. Display the last name and job ID for all the employees (excluding salesmen) with an annual salary
greater than the average annual remuneration
AVG(12*salary*(1+NVL(commission_pct,0))) for salesmen.

Hint: (JOB_ID = ’SA_REP’)

9. Display the names and salaries for all employees who work out of the Oxford office.

Hint: Use the LOCATIONS table to retrieve the city

Oracle9i: SQL for End Users 7- 24

Practice 7 (continued)

10. Display the employee ID and last names for all employees who report to King.

11. Display all the employees whose manager works in department 20.

12. Display the department ID, last names and job ids for all employees who work in the sales department.

Copyright © Oracle Corporation, 2001. All rights reserved.

iSQL*Plus

Oracle9i: SQL for End Users 8- 2

Lesson Aim

In this lesson, you will learn how to include iSQL*Plus commands to produce more readable SQL
output.

8-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Produce queries that require an input variable
• Customize the iSQL*Plus environment
• Produce more readable output
• Create and execute script files

Oracle9i: SQL for End Users 8- 3

Interactive Reports

The examples so far have not been interactive in any way. The user triggers the report and the report
runs without further prompting. The range of data is determined by the fixed WHERE clause in the
iSQL*Plus script file.

Using iSQL*Plus, you can create reports that prompt users to supply their own values to restrict the
range of data returned. To create interactive reports, you can embed substitution variables in a
command file or in a single SQL statement. Think of a variable as a container in which you temporarily
store values.

8-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Interactive Reports

I want to input query
values at run time....SALARY = ? …

… DEPARTMENT_ID = ? …
.. LAST_NAME = ? ...

User

Oracle9i: SQL for End Users 8- 4

Substitution Variables

In iSQL*Plus you can use a single ampersand (&) substitution variable to store values temporarily.
&user_variable and &&user_variable indicate a substitution variable in a SQL or iSQL*Plus
command. iSQL*Plus substitutes the value of the specified user variable for each substitution variable it
encounters. If the user variable is undefined, iSQL*Plus prompts you for a value each time an "&"
variable is found, and the first time an "&&" variable is found. You can predefine variables by using the
DEFINE command. DEFINE creates and assigns a value to a variable.

Examples of Restricted Ranges of Data

• Report figures for the current quarter or specified date range only

• Report on data relevant only to the user requesting the report

• Display personnel in a given department

Other Interactive Effects

Interactive effects are not restricted to direct user interaction with the WHERE clause. The same
principles can be used to achieve other goals, including:

• Dynamically altering headers and footers

• Obtaining input values from a file rather than from a person

• Passing values from one SQL statement to another

8-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Substitution Variables

• Use iSQL*Plus substitution variables to store values
temporarily or permanently
– Single ampersand (&)
– Double ampersand (&&)
– DEFINE command

• Pass variable values between SQL statements

Oracle9i: SQL for End Users 8- 5

8-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the & Substitution Variable

Use a variable prefixed with an ampersand to prompt
the user for a value.

SELECT *
FROM departments

WHERE department_id = &DEPARTMENT;

user input

Single Ampersand Substitution Variable

When running a report, users often want to restrict the data returned dynamically. iSQL*Plus
provides this flexibility by means of user variables. Use an ampersand to identify each variable in
your SQL statement. You do not need to pre-define the value of each variable.

The example in the slide creates a SQL statement to prompt the user for a department number at
run time and displays all the details for that department from the DEPARTMENTS table.

Note: With the single ampersand, the user is prompted every time the command is executed, if the
value of the variable does not exist. If the user does not enter a value for the substitution variable,
iSQL*Plus displays an error message.

Notation

Description

&user_variable Indicates a variable in a SQL statement, if the value of
the variable does not exist, iSQL*Plus prompts the
user for a value. iSQL*Plus discards a new variable
once it is used.

Oracle9i: SQL for End Users 8- 6

8-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the SET VERIFY Command

Toggling the display of the text of a command before
and after iSQL*Plus replaces substitution variables
with values.

SET VERIFY ON
SELECT employee_id, last_name, salary
FROM employees
WHERE employee_id = &employee_num;

Using the SET VERIFY Command

To confirm the changes in the SQL statement, use the iSQL*Plus SET VERIFY command.
Setting SET VERIFY to ON forces iSQL*Plus to display the text of a command before and after
it replaces substitution variables with values.

The example in the slide and the following example display the old as well as the new value of the
text.

Example

The following example displays the old as well as the new value of the text:
SET VERIFY ON
SELECT department_name, location_id
FROM departments
WHERE department_id = &dept_number;

Oracle9i: SQL for End Users 8- 7

Using the SET VERIFY Command (continued)

Oracle9i: SQL for End Users 8- 8

8-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Character and Date Values with
Substitution Variables

Use single quotation marks for date and character
values.
SELECT last_name, department_id, salary*12
FROM employees
WHERE job_id =’&job_title’;

Specifying Character and Date Values with Substitution Variables
In a WHERE clause, date and character values must be enclosed in single quotation marks. The
same rule applies to the substitution variables. To avoid entering the quotation marks at run time,
enclose the variable in single quotation marks within the SQL statement itself.

The slide shows a query to retrieve the employee name, department number, and annual salary of
all employees based on the job title entered at the prompt by the user.

Note: You can also use functions like UPPER,LOWER and INITCAP with the ampersand. If you
use UPPER(’&job_title’) , the user does not have to enter the job title in capitals. The
following example displays the location and department number for the department name that the
user enters. The INITCAP function enables the user to type the department name in any case:

SELECT location_id, department_id

FROM departments

WHERE department_name =INITCAP(’&dept_name’);

You might want to use WHERE UPPER(department_name) = UPPER(’&dept_name’)
when you do not know the exact format in which DEPARTMENT_NAME is stored in the table.

Oracle9i: SQL for End Users 8- 9

8-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Character and Date Values with
Substitution Variables

Use single quotation marks for date and character
values.

SELECT last_name, salary
FROM employees

WHERE hire_date= TO_DATE(’&hire_date’,’DD-MON-YYYY’);

Specifying Character and Date Values with Substitution Variables (continued)

The slide shows a query to retrieve the name and salary of all employees hired on the date entered
at the prompt by the user.

Note: The user must enter the hire date in DD-MON-YYYY format for the query to execute
correctly as the WHERE clause expects the hire date to be entered in the DD-MON-YYYY format.

Oracle9i: SQL for End Users 8- 10

8-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Specifying Column Names, Expressions,
and Text at Run Time

Use substitution variables to supplement:
• A WHERE condition
• An ORDER BY clause

• A column expression
• A table name
• An entire SELECT statement

Specifying Column Names, Expressions, and Text at Run Time
Not only can you use the substitution variables in the WHERE clause of a SQL statement, you can also
use them to substitute column names, expressions, or text.

Oracle9i: SQL for End Users 8- 11

8-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Specifying Column Names
at Run Time

SELECT last_name, &column_name
FROM employees;

…

Specifying Column Names, Expressions, and Text at Run Time (continued)

The example in the slide displays the employee name and any other column specified by the user
at run time, from the EMPLOYEES table.

The following example uses a substitution variable with an ORDER BY clause to prompt the user
for the order of the output:

SELECT employee_id, department_id, manager_id

FROM employees

WHERE department_id = 80

ORDER BY &order_column;

Oracle9i: SQL for End Users 8- 12

Specifying Column Names, Expressions, and Text at Run Time (continued)

Observe in the output above that the results set is sorted according to the MANAGER_ID column.

Oracle9i: SQL for End Users 8- 13

8-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Specifying Column Names and
Expressions at Run Time

SELECT employee_id, job_id, &column_name

FROM employees

WHERE &condition;

Specifying Column Names, Expressions, and Text at Run Time (continued)

The example in the slide displays the employee number, job title, and any other column specified
by the user at run time, from the EMPLOYEES table. The user can also specify the condition for
retrieval of rows and the column name by which the data is to be ordered.

Note: The condition that the user enters at the second prompt does not have to involve the column
name the user enters at the first prompt.

Oracle9i: SQL for End Users 8- 14

8-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Specifying Column Names, Expressions,
and Text at Run Time

SELECT employee_id, last_name,&column_name
FROM employees
WHERE &condition
ORDER BY &order_column;

Specifying Column Names, Expressions, and Text at Run Time (continued)

The example in the slide displays the employee number, name, job title, and any other column
specified by the user at run time, from the EMPLOYEES table. The user can also specify the
condition for retrieval of rows and the column name by which the data is to be ordered. The output
of the query is as follows:

Oracle9i: SQL for End Users 8- 15

8-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the && Substitution Variable

If the variable is prefixed with a double ampersand
(&&), iSQL*Plus will prompt for the value only once.

SELECT employee_id,last_name,department_id
FROM employees
WHERE job_id = ’&&JOB’ ;

Double Ampersand Substitution Variable

iSQL*Plus stores the first value supplied and uses it again whenever the query is run, without
prompting for it as shown in the following example:
SELECT employee_id,last_name,department_id
FROM employees
WHERE job_id = ’&&JOB’;

Oracle9i: SQL for End Users 8- 16

Double Ampersand Substitution Variable (continued)
Observe that when the command is run the second time, the user is not prompted for a value of the JOB
variable.

This double ampersand substitution variable defines the variable on the first execution of a query. The
value remains stored in the variable until the end of the iSQL*Plus session, or until it is UNDEFINED.

The UNDEFINE command clears the variable definition. For example, the following command
undefines the variable JOB.

UNDEFINE JOB

Oracle9i: SQL for End Users 8- 17

8-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining User Variables

• You can use one of two iSQL*Plus commands to
predefine variables:
– DEFINE creates a CHAR data type user variable
– ACCEPT reads user input and stores it in a variable

• When using the DEFINE command, use single
quotation marks around any value that includes
a space

Defining User Variables
You can predefine user variables before executing a SELECT statement. iSQL*Plus provides the
DEFINE command for defining and setting user variables.

Note: iSQL*Plus commands can continue onto multiple lines, but require a hyphen.

Command Description

DEFINE variable = value

Creates a CHAR data type user variable and assigns a
value to it

DEFINE variable Displays the variable, its value, and its data type

DEFINE Displays all user variables with value and data type

Oracle9i: SQL for End Users 8- 18

The DEFINE and UNDEFINE Commands

Variables are defined until you do one of the following:

• Issue the UNDEFINE command on a variable

• Exit iSQL*Plus

When you undefine variables, you can verify your changes with the DEFINE command. When you exit
iSQL*Plus, variables defined during that session are lost.

Guidelines

• The DEFINE command creates a variable if the variable does not exist; this command
automatically redefines a variable if it exists.

• When using the DEFINE command, use single quotation marks to enclose a string that contains
an embedded space.

8-18 Copyright © Oracle Corporation, 2001. All rights reserved.

DEFINE and UNDEFINE Commands

• A variable remains defined until you either:
– Use the UNDEFINE command to clear it

or
– Exit iSQL*Plus

• You can verify your changes with the DEFINE
command

Oracle9i: SQL for End Users 8- 19

8-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DEFINE Command

• Create a variable to hold the department name.

DEFINE deptname = sales

SELECT *
FROM departments
WHERE department_name = INITCAP(’&deptname’);

• Use the variable as you would any other variable.

Using the DEFINE Command

You can use the DEFINE command to create a variable and then use it as you would any other
substitution variable. The example in the slide creates a variable DEPARTMENT_NAME that
contains the department name, Sales. The SQL statement then uses this variable to display the
number, name, and location of the sales department.

Use the UNDEFINE command to erase the variable:

UNDEFINE deptname

DEFINE deptname

symbol deptname is UNDEFINED

Variables can also be used to define expressions that would be used frequently in SELECT
statements throughout the session. It would be useful to DEFINE variables and reference the
variable in the SELECT statement rather than repeatedly typing out the expression. The example
below illustrates the usage of variables.

DEFINE val = 12*salary*(1+NVL(commission_pct,0))

SELECT * FROM employees

WHERE &val > 25000;

Oracle9i: SQL for End Users 8- 20

8-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Customizing the iSQL*Plus Environment

• Use the SET commands to control the current
session.

• Verify what you have set by using the SHOW
command.

SET ECHO ON

SHOW ECHO

SET system_variable value

Customizing the iSQL*Plus Environment
You can use the SET commands to control the environment in which iSQL*Plus is currently
operating.

In the syntax:

system_variable Controls one aspect of the session environment

value Is a value for the system variable

You can verify what you have set by using the SHOW command. The SHOW command in the slide
checks whether ECHO had been set on or off. To see all SET variable values, use the SHOW ALL
command.

Oracle9i: SQL for End Users 8- 21

8-21 Copyright © Oracle Corporation, 2001. All rights reserved.

SET Command Variables

• FEEDBACK
• HEADING
• LINESIZE
• LONG
• PAGESIZE
• PAUSE

SET Command Variables

Note: The value n represents a numeric value. The values shown in bold face in the table are default
values. If you enter no value with the variable, iSQL*Plus assumes the default value.

SET Variable and Values Description
FEED[BACK] {6|n|OFF|ON}

Displays the number of records returned by a
query when the query selects at least n records.

HEA[DING] {OFF|ON} Determines whether column headings are
displayed in reports.

LIN[ESIZE] {80|n} Sets the number of characters per line to n for
reports.

LONG {80|n} Sets the maximum width for displaying LONG
values.

PAGES[IZE] {24|n} Specifies the number of lines per page of output.

PAU[SE] {OFF|ON|text} Controls scrolling of the terminal. You must
press [Return] after seeing each pause.

Oracle9i: SQL for End Users 8- 22

8-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Using SET Command Variables

SET feedback 1
SELECT last_name, department_id, hire_date
FROM employees
WHERE last_name=’King’;

SET feedback

Using SET Feedback

The example in the slide shows the use of the SET feedback command. FEED[BACK]
{6|n|ON|OFF}displays the number of records returned by a query when a query selects at least
n records.ON or OFF turns this display on or off. Turning feedback ON sets n to 1. Setting
feedback to zero is equivalent to turning it OFF.

Oracle9i: SQL for End Users 8- 23

8-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Using SET Command Variables

SET heading off
SELECT employee_id, last_name, manager_id
FROM employees
WHERE last_name=’Kochhar’;

SET heading

Using SET Heading

The example in the slide turns off the headings for columns. Queries entered from the iSQL*Plus
command line will return data for any column that appears in the SELECT list but do not display
the heading for the column.

Oracle9i: SQL for End Users 8- 24

8-24 Copyright © Oracle Corporation, 2001. All rights reserved.

iSQL*Plus Format Commands

• COLUMN [column option]
• BREAK [ON report_element]

Obtaining More Readable Reports

You can control the report features by using the following commands:

COL[UMN] [column option]: Controls column formats

BRE[AK] [ON report_element]: Suppresses duplicate values and sections rows of data with
line feeds

Guidelines

• All format commands remain in effect until the end of the iSQL*Plus session or until the format
setting is overwritten or cleared.

• Remember to reset your iSQL*Plus settings to default values after every report.

• There is no command for setting a iSQL*Plus variable to its default value; you must know the
specific value or log out and log in again.

• If you give an alias to your column, you must use the alias name, not the column name.

Oracle9i: SQL for End Users 8- 25

8-25 Copyright © Oracle Corporation, 2001. All rights reserved.

The COLUMN Command

Controls display of a column:

• CLE[AR] clears any column formats.
• FOR[MAT] format uses a format model to change the

display of the column.
• HEA[DING] text sets the column heading.
• JUS[TIFY] {align} aligns the column heading at left,

center,or right.

COL[UMN] [{column|alias} [option]]

COLUMN Command Options

Option Description

CLE[AR] Clears any column formats.

FOR[MAT] format Changes the display of the column data.

HEA[DING] text

Sets the column heading. A vertical line | forces a line feed in
the heading if you do not use justification.

JUS[TIFY] {align}

Aligns the column heading (not the data) at the left, center or
right of the column.

NOPRI[NT] Hides the column.

NUL[L] text Specifies text to be displayed for null values.

PRI[NT] Shows the column.

TRU[NCATED] Truncates the string at the end of the first line of display.

WRA[PPED] Wraps the end of the string to the next line.

Oracle9i: SQL for End Users 8- 26

8-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the COLUMN Command

• Create a column heading for the LAST_NAME
column.

• Display the current setting for the LAST_NAME column.

• Clear settings for the LAST_NAME column.

COLUMN last_name HEADING ’Employee|Name’ FORMAT A15

COLUMN last_name

COLUMN last_name CLEAR

Display or Clear Settings
To show or clear the current COLUMN command settings, use the following commands:

Note: If you have a lengthy command, you can continue it on the next line by ending the current line
with a hyphen.

Command Description
COL[UMN] column Displays the current settings for the specified column
COL[UMN] Displays the current settings for all columns
COL[UMN] column CLE[AR] Clears the settings for the specified column
CLE[AR] COL[UMN] Clears the settings for all columns

Oracle9i: SQL for End Users 8- 27

8-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the COLUMN Command

COLUMN last_name HEADING ’Employee|Name’ FORMAT A15
COLUMN last_name

SELECT last_name, salary, manager_id
FROM employees
WHERE last_name =’Lorentz’;

Using the COLUMN Command

The example in the slide sets the heading for the DEPARTMENT_NAME column to Employee
Name. The ’|’ character is used to wrap the heading to two lines. The width of the column is set to
15 characters with the FORMAT command.

The following example gives the MANAGER_ID column the title of Manager

COLUMN manager_id HEADING ’Manager’

SELECT last_name, manager_id

FROM employees

WHERE last_name =’Davies’;

.

Oracle9i: SQL for End Users 8- 28

8-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the COLUMN Command

COLUMN salary FORMAT $99,999.00

COLUMN manager_id FORMAT 999999999 NULL ’No manager’

SELECT last_name, salary, manager_id
FROM employees
WHERE last_name =’King’;

Using the COLUMN Command (continued)

In the example in the slide, the COLUMN command formats the display of the data in the column
with a $ symbol, two decimal places, and the comma. The MANAGER_ID column is formatted to
contain nine digits, and the text to display for null values in the column is set to No Manager.

The following command specifies the text to display for null values in the COMMISSION_PCT
column. Any employee who does not earn commission (who is not a salesman) has -No Comm-
displayed in the COMMISSION_PCT column.
COLUMN commission_pct NULL ’-No Comm-’
SELECT last_name,commission_pct
FROM employees
WHERE department_id IN (80,20);

Oracle9i: SQL for End Users 8- 29

8-29 Copyright © Oracle Corporation, 2001. All rights reserved.

COLUMN Format Models

Result

N/A

1234

01234

$1234

L1234

1234.00

1,234

Example

N/A

99999

09999

$9999

L9999

9999.99

9,999

Element

An

9

0

$

L

.

,

Description

Sets a display width of n

Single zero-suppression
digit

Enforces leading zero

Floating dollar sign

Local currency

Position of decimal point

Thousand separator

COLUMN Format Models

The slide shows sample COLUMN format models.

The Oracle Server displays a string of hash signs (#) in place of a whole number whose digits exceed
the number of digits provided in the format model. It also displays pound signs in place of a value
whose format model is alphanumeric but whose actual value is numeric.

Oracle9i: SQL for End Users 8- 30

8-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the BREAK Command

Suppresses duplicates and sections rows:
• To suppress duplicates

BREAK ON last_name ON job_id

BREAK ON last_name SKIP 4 ON job_id SKIP 2

• To section rows at break values

The BREAK Command

Use the BREAK command to place a space between rows and suppress duplicate values. The column
you specify in a BREAK command is called a break column. By including the break column in your
ORDER BY clause, you create meaningful subsets of records in your output.

Syntax

BREAK on column[|alias|row] [skip n|dup|page] on .. [on report]

In the syntax: page Goes to a new page when the break value changes

Breaks can be active on:

- Column

- Row

- Page

- Report
duplicate Displays duplicate values

Clear all Break settings by using the CLEAR command:

CLEAR BREAK

Oracle9i: SQL for End Users 8- 31

8-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the BREAK Command

BREAK ON job_id
SELECT job_id, last_name
FROM employees
ORDER BY job_id;

…

Using the BREAK Command

The example in the slide uses the BREAK ON command to suppress the repetition of job titles in
the output. The ORDER BY job clause ensures that job titles are grouped for clear output.

Oracle9i: SQL for End Users 8- 32

8-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Script File
to Run a Report

1. Create the SQL SELECT statement.
2. Save the SELECT statement to a script file with a

.sql extension.

3. Load the script file into an editor.
4. Add formatting commands before the

SELECT statement.

5. Verify that the termination character follows the
SELECT statement.

Creating the Script File

You can either enter each of the iSQL*Plus commands at the SQL prompt or put all the commands,
including the SELECT statement, in a command (or script) file. A typical script consists of at least one
SELECT statement and several iSQL*Plus commands.

How to Create a Script File

1. Create the SQL SELECT statement at the SQL prompt. Make sure that the data required
for the report is accurate before you save the statement to a file and apply formatting

commands. If you intend to use breaks ensure that the relevant ORDER BY clause is
included.

2. Save the SELECT statement to a script file with a .sql extension. Click the Save
Script button in the iSQL*Plus window to save the script.

3. Edit the script file to enter the iSQL*Plus commands.

4. Add the required formatting commands before the SELECT statement. Be careful not to
place iSQL*Plus commands in the SELECT statement.

5. Verify that the SELECT statement is followed by a run character, either a semicolon (;)
or a slash (/).

Oracle9i: SQL for End Users 8- 33

8-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Script File
to Run a Report

6. Clear formatting commands after the SELECT
statement.

7. Save the script file.
8. In iSQL*Plus, browse to locate the script file.
9. Load the script file.
10.Execute the script.

Creating the Script File (continued)

How to Create a Script File (continued)

6. Add the format-clearing iSQL*Plus commands after the run character, or call a reset file that
contains all the format-clearing commands.

7. Save the script file with your changes.

8. In iSQL*Plus, browse to locate the script file.

9. Load the script file.

10. Execute the script.

Guidelines

• You can include blank lines between iSQL*Plus commands in a script.

• You can abbreviate iSQL*Plus commands.

• Include reset commands at the end of the file to restore the original iSQL*Plus environment.

Oracle9i: SQL for End Users 8- 34

8-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Sample Report

Example

Create a script file to create a report that displays the job title, name, and salary of every employee
whose salary is more than $10000. Rename the job ID column as Job Category and split it into two
lines. Rename the employee last name column as Employee. Rename the salary column Salary and have
the output displayed as $2,500.00. Order the output in the order of job first and then by last name.

SET PAGESIZE 37

SET LINESIZE 60

SET FEEDBACK OFF

COLUMN job_id HEADING ’Job|Category’ FORMAT A15

COLUMN last_name HEADING ’Employee’ FORMAT A15

COLUMN salary HEADING ’Salary’ FORMAT $99,999.99

REM ** Insert SELECT statement

SELECT job_id, last_name, salary

FROM employees

WHERE salary > 10000;

Remember to clear the settings after the report is produced

REM indicates a remark or comment in iSQL*Plus.

FORMAT A15 indicates alphanumeric data.

Oracle9i: SQL for End Users 8- 35

Summary

Substitution variables are useful for running reports. They give you the flexibility to replace values in a
WHERE clause, column names, and expressions. You can customize reports by writing script files with:

• Single ampersand substitution variables

• Double ampersands substitution variables

8-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Substitution variables can be used in script files with
the following:
• Single ampersands
• Double ampersands

Oracle9i: SQL for End Users 8- 36

8-36 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 8 Overview

This practice covers the following topics:
• Creating a query to display values using

substitution variables
• Starting a command file containing variables

Practice 8 Overview

In this practice you use substitution variables to create run time selection criteria to create files that can
be run interactively.

Oracle9i: SQL for End Users 8- 37

Practice 8

1. a. A single ampersand substitution variable prompts only once.

True/False

b. The DEFINE command is a SQL statement.

True/False

2. Write a statement that prompts a user for a department number at run time and then displays the
employee last name, ID, and salary, for each employee in the department:

3. Write a script that prompts the user for two dates in the DD-MON-YYYY format. The script displays the
employee last name, number, salary and hire date for each employee hired between these two dates.
Save the script as 8Lab3.sql using the Save Script button.

Note: Enter the date in the DD-MON-YYYY format.

Oracle9i: SQL for End Users 8- 38

Copyright © Oracle Corporation, 2001. All rights reserved.

Manipulating Data

Oracle9i: SQL for End Users A- 2

Lesson Aim

In this lesson, you will learn how to insert rows into a table, update existing rows in a table, and delete
existing rows from a table. You will also learn how to control transactions with the COMMIT,
SAVEPOINT, and ROLLBACK statements.

A-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe each DML statement
• Insert rows into a table
• Update rows in a table
• Delete rows from a table
• Merge rows in a table
• Control transactions

Oracle9i: SQL for End Users A- 3

A-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Manipulation Language

• A DML statement is executed when you:
– Add new rows to a table
– Modify existing rows in a table
– Remove existing rows from a table

• A transaction consists of a collection of DML
statements that form a logical unit of work.

Data Manipulation Language

Data manipulation language (DML) is a core part of SQL. When you want to add, update, or delete data
in the database, you execute a DML statement. A collection of DML statements that form a logical unit
of work is called a transaction.

Consider a banking database. When a bank customer transfers money from a savings account to a
checking account, the transaction might consist of three separate operations: decrease the savings
account, increase the checking account, and record the transaction in the transaction journal. The Oracle
Server must guarantee that all three SQL statements are performed to maintain the accounts in proper
balance. When something prevents one of the statements in the transaction from executing, the other
statements of the transaction must be undone.

Oracle9i: SQL for End Users A- 4

Adding a New Row to a Table (continued)
You can add new rows to a table by issuing the INSERT statement.

In the syntax:

table is the name of the table

column is the name of the column in the table to populate

value is the corresponding value for the column

Note: This statement with the VALUES clause adds only one row at a time to a table.

A-4 Copyright © Oracle Corporation, 2001. All rights reserved.

The INSERT Statement Syntax

• Add new rows to a table by using the INSERT
statement.

• Only one row is inserted at a time with this syntax.

INSERT INTO table [(column [, column...])]
VALUES (value [, value...]);

Oracle9i: SQL for End Users A- 5

A-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Inserting New Rows

• Insert a new row containing values for each column.
• List values in the default order of the columns in the

table.
• Optionally, list the columns in the INSERT clause.

• Enclose character and date values within single
quotation marks.

INSERT INTO departments(department_id, department_name,
manager_id, location_id)

VALUES (70, ’Public Relations’, 100, 1700);
1 row created.

Adding a New Row to a Table (continued)

Because you can insert a new row that contains values for each column, the column list is not required
in the INSERT clause. However, if you do not use the column list, the values must be listed according
to the default order of the columns in the table and a value must be provided for each column.

For clarity, use the column list in the INSERT clause.
Enclose character and date values within single quotation marks; it is not recommended to enclose
numeric values within single quotation marks.

Number values should not be enclosed in single quotes, because implicit conversion may take place for
numeric values assigned to NUMBER data type columns if single quotes are included.

Oracle9i: SQL for End Users A- 6

A-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Inserting Rows with Null Values

• Implicit method: Omit the column from the
column list.

INSERT INTO departments
VALUES (100, ’Finance’, NULL, NULL);
1 row created.

INSERT INTO departments (department_id,
department_name)

VALUES (30, ’Purchasing’);
1 row created.

• Explicit method: Specify the NULL keyword in the
VALUES clause.

Methods for Inserting Null Values

Be sure that the targeted column allows null values by verifying the Null? status with the
iSQL*Plus DESCRIBE command.

The Oracle Server automatically enforces all data types, data ranges, and data integrity constraints.
Any column that is not listed explicitly obtains a null value in the new row.

Common errors that can occur during user input:

• Mandatory value missing for a NOT NULL column

• Duplicate value violates uniqueness constraint

• Foreign key constraint violated

• CHECK constraint violated

• Data type mismatch

• Value too wide to fit in column

Method Description

Implicit Omit the column from the column list.

Explicit Specify the NULL keyword in the VALUES list,
specify the empty string (’’) in the VALUES list for character strings and
dates.

Oracle9i: SQL for End Users A- 7

A-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Inserting Special Values

The SYSDATE function records the current date
and time.
INSERT INTO employees (employee_id,

first_name, last_name,
email, phone_number,
hire_date, job_id, salary,
commission_pct, manager_id,
department_id)

VALUES (113,
’Louis’, ’Popp’,
’LPOPP’, ’515.124.4567’,
SYSDATE, ’AC_ACCOUNT’, 6900,
NULL, 205, 100);

1 row created.

Inserting Special Values by Using SQL Functions

You can use functions to enter special values in your table.

The slide example records information for employee Popp in the EMPLOYEES table. It supplies
the current date and time in the HIRE_DATE column. It uses the SYSDATE function for current
date and time.

You can also use the USER function when inserting rows in a table. The USER function records
the current username.

Confirming Additions to the Table

SELECT employee_id, last_name, job_id, hire_date,
commission_pct

FROM employees

WHERE employee_id = 113;

Oracle9i: SQL for End Users A- 8

A-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Inserting Specific Date Values

• Add a new employee.
INSERT INTO employees
VALUES (114,

’Den’, ’Raphealy’,
’DRAPHEAL’, ’515.127.4561’,
TO_DATE(’FEB 3, 1999’, ’MON DD, YYYY’),
’AC_ACCOUNT’, 11000, NULL, 100, 30);

1 row created.

Inserting Specific Date and Time Values
The DD-MON-YY format is usually used to insert a date value. With this format, recall that the
century defaults to the current century. Because the date also contains time information, the default
time is midnight (00:00:00).

If a date must be entered in a format other than the default format, for example, with another
century, or a specific time, you must use the TO_DATE function.

The example on the slide records information for employee Raphealy in the EMPLOYEES table. It
sets the HIRE_DATE column to be February 3, 1999. If we used the following statement instead
of the one shown on the slide, the year of the HIRE_DATE is interpreted as 2099.

INSERT INTO employees

VALUES (114,

’Den’, ’Raphealy’,

’DRAPHEAL’, ’515.127.4561’,

’03-FEB-99’,

’AC_ACCOUNT’, 11000, NULL, 100, 30);

If the RR format is used, the system provides the correct century automatically, even if it is not the
current one.

Oracle9i: SQL for End Users A- 9

A-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Script

• The DEFINE command creates an iSQL*Plus
variable and stores the value.

• & is a placeholder for the variable value.

DEFINE department_id = 40

DEFINE department_name = "Human Resources"

DEFINE location = 2500

INSERT INTO departments

(department_id, department_name, location_id)

VALUES (&department_id, ’&department_name’,

&location);

Creating a Script
The DEFINE command specifies a user variable and assigns it a CHAR value, or lists the value
and variable type of a single variable or all variables.

Syntax

DEF[INE] [variable]|[variable = text]

Where:

Variable Represents the user variable whose value you wish to assign or
list.

text Represents the CHAR value you wish to assign to variable.
Enclose text in single quotes if it contains punctuation or
blanks.

variable = text Defines (names) a user variable and assigns it a CHAR value.

Enter DEFINE followed by variable to list the value and type of variable. Enter DEFINE with no
clauses to list the values and types of all user variables. You can save your command with
substitution variables to a file and execute the commands in the file. The example on the slide
records information for a department in the DEPARTMENTS table.

Do not prefix the iSQL*Plus substitution parameter with the ampersand (&) when referencing it in
the DEFINE command. Use a dash (-) to continue an iSQL*Plus command on the next line.

Oracle9i: SQL for End Users A- 10

A-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Copying Rows
from Another Table

• Write your INSERT statement with a subquery.

INSERT INTO sales_reps(id, name, salary, commission_pct)
SELECT employee_id, last_name, salary, commission_pct
FROM employees
WHERE job_id LIKE ’%REP%’;

4 rows created.

• Do not use the VALUES clause.

• Match the number of columns in the INSERT clause
to those in the subquery.

Copying Rows from Another Table
You can use the INSERT statement to add rows to a table where the values are derived from
existing tables. In place of the VALUES clause, you use a subquery.

Syntax

INSERT INTO table [column (, column)] subquery;

In the syntax:

table is the table name

column is the name of the column in the table to populate

subquery is the subquery that returns rows into the table

The number of columns and their data types in the column list of the INSERT clause must match
the number of values and their data types in the subquery. To create a copy the rows of a table, use
SELECT * in the subquery.

INSERT INTO copy_emp

SELECT *

FROM employees;

For more information, see Oracle SQL Reference, “SELECT,” Subqueries section.

Oracle9i: SQL for End Users A- 11

A-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Subquery in an INSERT
statement

INSERT INTO
(SELECT employee_id, last_name,

email, hire_date, job_id, salary,
department_id

FROM employees
WHERE department_id = 50)

VALUES (99999, ’Taylor’, ’DTAYLOR’,
TO_DATE(’07-JUN-99’, ’DD-MON-RR’),
’ST_CLERK’, 5000, 50);

1 row created.

Using a Subquery in an INSERT Statement

You can use a subquery in place of the table name in the INTO clause of the INSERT statement. Use
the INSERT INTO clause to specify the target object or objects into which Oracle is to insert data.

The select list of this subquery must have the same number of columns as the column list of the
VALUES clause. Any rules on the columns of the base table must be followed in order for the INSERT
statement to work successfully. For example, you could not put in a duplicate employee Id, nor leave out
a value for a mandatory not null column.

Oracle9i: SQL for End Users A- 12

A-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the WITH CHECK OPTION Keyword
on DML Statements

• A subquery is used to identify the table and
columns of the DML statement.

• The WITH CHECK OPTION keyword prohibits you
from changing rows that are not in the subquery.

INSERT INTO (SELECT employee_id, last_name, email,
hire_date, job_id, salary,department_id

FROM employees
WHERE department_id = 50 WITH CHECK OPTION)

VALUES (99998, ’Smith’, ’JSMITH’,
TO_DATE(’07-JUN-99’, ’DD-MON-RR’),
’ST_CLERK’, 5000,10);

The WITH CHECK OPTION Keyword

Specify WITH CHECK OPTION to indicate that, if the subquery is used in place of a table in an
INSERT, UPDATE, or DELETE statement, no changes to that table are permitted which would produce
rows that are not included in the subquery.

In the example shown, the WITH CHECK OPTION keyword is used. The subquery identifes rows that
are in department 50. The value provided for DEPARTMENT_ID it in the VALUES list is 10, which
violates the CHECK OPTION. The above query can be rewritten as:

Oracle9i: SQL for End Users A- 13

The WITH CHECK OPTION Keyword (Continued)

INSERT INTO (SELECT employee_id, last_name, email,

hire_date, job_id, salary,department_id

FROM employees

WHERE department_id = 50 WITH CHECK OPTION)

VALUES (99998, ’Smith’, ’JSMITH’,

TO_DATE(’07-JUN-99’, ’DD-MON-RR’),

’ST_CLERK’, 5000,50);

The following statement is legal even though the value for DEPARTMENT_ID violates the condition of
the subquery where_clause:

INSERT INTO (SELECT employee_id, last_name, email,

hire_date, job_id, salary,department_id

FROM employees

WHERE department_id = 50)

VALUES (99998, ’Smith’, ’JSMITH’,

TO_DATE(’07-JUN-99’, ’DD-MON-RR’),

’ST_CLERK’, 5000,10);

Oracle9i: SQL for End Users A- 14

A-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of the Explict Default Feature

• The explicit default feature allows you to use the
DEFAULT keyword where the column default value
is desired.

• The addition of this feature is for compliance with
the SQL: 1999 Standard.

• This allows the user to control where and when the
default value should be applied to data.

• Explicit defaults can be used in INSERT and UPDATE
statements.

Explicit Defaults
The DEFAULT keyword can be used in INSERT and UPDATE statements to identify a default column
value. If no default value exists, a null value is used.

Oracle9i: SQL for End Users A- 15

A-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Explicit Default Values

INSERT INTO departments
(department_id, department_name, manager_id)

VALUES (300, ’Engineering’, DEFAULT);

• DEFAULT with INSERT:

Using Explicit Default Values
Specify DEFAULT to set the column to the value previously specified as the default value for the
column. If no default value for the corresponding column has been specified, Oracle sets the column to
null.

In the example shown, the INSERT statement uses a default value for the MANAGER_ID column. If
there is no default value defined for the column, a null value is inserted instead.

Oracle9i: SQL for End Users A- 16

Updating Rows

You can modify existing rows by using the UPDATE statement.

In the syntax:

table is the name of the table

column is the name of the column in the table to populate

value is the corresponding value or subquery for the column

condition identifies the rows to be updated and is composed of column names
expressions, constants, subqueries, and comparison operators

Confirm the update operation by querying the table to display the updated rows.

For more information, see Oracle SQL Reference, “UPDATE.”

Note: In general, use the primary key to identify a single row. Using other columns may unexpectedly
cause several rows to be updated. For example, identifying a single row in the EMPLOYEES table by
name is dangerous because more than one employee may have the same name.

A-16 Copyright © Oracle Corporation, 2001. All rights reserved.

The UPDATE Statement Syntax

• Modify existing rows with the UPDATE statement.

• Update more than one row at a time, if required.

UPDATE table
SET column = value [, column = value, ...]
[WHERE condition];

Oracle9i: SQL for End Users A- 17

A-17 Copyright © Oracle Corporation, 2001. All rights reserved.

• Specific row or rows are modified if you specify the
WHERE clause.

Updating Rows in a Table

UPDATE copy_emp
SET department_id = 110;
23 rows updated.

UPDATE employees
SET department_id = 70
WHERE employee_id = 113;
1 row updated.

• All rows in the table are modified if you omit the
WHERE clause.

Updating Rows (continued)
The UPDATE statement modifies specific rows, if the WHERE clause is specified. The slide
example transfers employee 113 (Popp) to department 70.

If you omit the WHERE clause, all the rows in the table are modified.

Note: The COPY_EMP table has the same data as the EMPLOYEES table.

Oracle9i: SQL for End Users A- 18

A-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating Two Columns with a Subquery

Update employee 114’s job and department to match
that of employee 205.

UPDATE employees
SET job_id = (SELECT job_id

FROM employees
WHERE employee_id = 205),

salary = (SELECT salary
FROM employees
WHERE employee_id = 205)

WHERE employee_id = 114;
1 row updated.

Updating Two Columns with a Subquery
You can update multiple columns in the SET clause of an UPDATE statement by writing multiple
subqueries.

Syntax

UPDATE table

SET column =

(SELECT column

FROM table

WHERE condition)

[,column =

(SELECT column

FROM table

WHERE condition)]

[WHERE condition] ;

Note: If no rows are updated, a message “0 rows updated.” is returned:

Oracle9i: SQL for End Users A- 19

A-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating Rows Based
on Another Table

Use subqueries in UPDATE statements to update

rows in a table based on values from another table.

UPDATE copy_emp
SET department_id = (SELECT department_id

FROM employees
WHERE employee_id = 100)

WHERE job_id = (SELECT job_id
FROM employees
WHERE employee_id = 200);

1 row updated.

Updating Rows Based on Another Table
You can use subqueries in UPDATE statements to update rows in a table. The example on the slide
updates the COPY_EMP table based on the values from the EMPLOYEES table. It changes the
department ID of all the employees who have the same JOB_ID as the employee with the
EMPLOYEE_ID 200. It updates their department ID to the same department ID as the employee
with the EMPLOYEE_ID 100.

Oracle9i: SQL for End Users A- 20

A-20 Copyright © Oracle Corporation, 2001. All rights reserved.

UPDATE employees
SET department_id = 55
WHERE department_id = 110;

Updating Rows:
Integrity Constraint Error

Departm
ent n

umber 5
5 does not e

xist

Integrity Constraint Error

If you attempt to update a record with a value that is tied to an integrity constraint, an error is
returned.

In the example on the slide, department number 55 does not exist in the parent table,
DEPARTMENTS, and so you receive the parent key violation ORA-02291.

Note: Integrity constraints ensure that the data adheres to a predefined set of rules. A subsequent
lesson covers integrity constraints in greater depth.

Oracle9i: SQL for End Users A- 21

Deleting Rows
You can remove existing rows by using the DELETE statement.

In the syntax:

table is the table name.
condition identifies the rows to be deleted and is composed of column names,

expressions, constants, subqueries, and comparison operators.

Note: If no rows are deleted, a message “0 rows deleted.” is returned:

For more information, see Oracle SQL Reference, “DELETE.”

A-21 Copyright © Oracle Corporation, 2001. All rights reserved.

The DELETE Statement

You can remove existing rows from a table by using
the DELETE statement.

DELETE [FROM] table
[WHERE condition];

Oracle9i: SQL for End Users A- 22

A-22 Copyright © Oracle Corporation, 2001. All rights reserved.

• Specific rows are deleted if you specify the WHERE
clause.

• All rows in the table are deleted if you omit the
WHERE clause.

Deleting Rows from a Table

DELETE FROM departments
WHERE department_name = ’Finance’;

1 row deleted.

DELETE FROM copy_emp;
23 rows deleted.

Deleting Rows (continued)
You can delete specific rows by specifying the WHERE clause in the DELETE statement. The slide
example deletes the Finance department from the DEPARTMENTS table. You can confirm the delete
operation by displaying the deleted rows using the SELECT statement.

SELECT *

FROM departments

WHERE department_name = ’Finance’;

no rows selected.

If you omit the WHERE clause, all rows in the table are deleted. The second example on the slide deletes
all the rows from the COPY_EMP table because no WHERE clause has been specified.

Example

Remove rows identified in the WHERE clause.

DELETE FROM employees

WHERE employee_id = 114;

1 row deleted.

DELETE FROM departments

WHERE department_id IN (30, 40);

2 rows deleted.

Oracle9i: SQL for End Users A- 23

A-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Deleting Rows Based
on Another Table

Use subqueries in DELETE statements to remove
rows from a table based on values from another table.

DELETE FROM employees
WHERE department_id =

(SELECT department_id
FROM departments
WHERE department_name LIKE ’%Public%’);

1 row deleted.

Deleting Rows Based on Another Table

You can use subqueries to delete rows from a table based on values from another table. The
example on the slide deletes all the employees who are in a department where the department
name contains the string “Public.” The subquery searches the DEPARTMENTS table to find the
department number based on the department name containing the string “Public.” The subquery
then feeds the department number to the main query, which deletes rows of data from the
EMPLOYEES table based on this department number.

Oracle9i: SQL for End Users A- 24

A-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Deleting Rows:
Integrity Constraint Error

DELETE FROM departments
WHERE department_id = 60;

You cannot delete a row

that contains a primary key

that is used as a foreign key

in another table.

Integrity Constraint Error

If you attempt to delete a record with a value that is tied to an integrity constraint, an error is
returned.

The example on the slide tries to delete department number 60 from the DEPARTMENTS table, but
it results in an error because department number is used as a foreign key in the EMPLOYEES table.
If the parent record that you attempt to delete has child records, then you receive the child record
found violation ORA-02292.

The following statement works because there are no employees in department 70:

DELETE FROM departments

WHERE department_id = 70;

1 row deleted.

.

Oracle9i: SQL for End Users A- 25

A-25 Copyright © Oracle Corporation, 2001. All rights reserved.

The MERGE Statement

• Provides the ability to conditionally update or insert
data into a database table

• It performs an UPDATE if the row exists and an
INSERT if it is a new row.
– Avoids multiple updates
– Increases performance and ease of use
– Is useful in data warehousing applications

MERGE Statements

SQL has been extended to include the MERGE statement. This statement allows you to update or insert
a row conditionally into a table, thus avoiding multiple UPDATE statements. The decision whether to
update or insert into the target table is based on a condition in the ON clause.

Since the MERGE command combines the INSERT and UPDATE commands, you need both INSERT
and UPDATE privileges on the target table and the SELECT privilege on the source table.

The MERGE statement is deterministic. You cannot update the same row of the target table multiple
times in the same MERGE statement.

An alternative approach is to use PL/SQL loops and multiple DML statements. The MERGE statement,
however, is easy to use, and more simply expressed as a single SQL statement.

The MERGE statement is suitable in a number of data warehousing applications. For example, in a data
warehousing application, you may need to work with data coming from multiple sources, some of which
may be duplicates. The MERGE statement allows you to conditionally add or modify rows.

Oracle9i: SQL for End Users A- 26

A-26 Copyright © Oracle Corporation, 2001. All rights reserved.

The MERGE Statement Syntax

You can conditionally insert or update rows in a
table by using the MERGE statement.

MERGE INTO table_name table_alias
USING (table|view|sub_query) AS alias
ON (join condition)
WHEN MATCHED THEN
UPDATE SET
col1 = col_val1,
col2 = col2_val

WHEN NOT MATCHED THEN
INSERT (column_list)
VALUES (column_values);

Merging Rows
You can update existing rows and insert new rows conditionally by using the MERGE statement.

In the syntax:

INTO clause specifies the target table you are updating or inserting into

USING clause identifies the source of the data to be updated or inserted.
This can be a table, view or subquery

ON clause The condition upon which the MERGE operation either
updates or inserts

WHEN MATCHED | Instructs the server how to respond to the results of the join
WHEN NOT MATCHED condition

For more information, see Oracle SQL Reference, “MERGE.”

Oracle9i: SQL for End Users A- 27

A-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Merging Rows

Insert or update rows in the COPY_EMP table to match
the EMPLOYEES table

MERGE INTO copy_emp c
USING employees e
ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN
UPDATE SET

c.first_name = e.first_name,
c.last_name = e.last_name,
...
c.department_id = e.department_id

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,

e.email, e.phone_number, e.hire_date, e.job_id,
e.salary, e.commission_pct, e.manager_id,
e.department_id);

Example of Merging Rows
The example shown matches the EMPLOYEE_ID in the COPY_EMP table to the EMPLOYEE_ID
in the EMPLOYEES table. If a match is found, the row in the COPY_EMP table is updated to match
the row in the EMPLOYEES table. If the row is not found, it is inserted into the COPY_EMP table.
The complete code for the example in the slide is given in the next page.

Oracle9i: SQL for End Users A- 28

Example of Merging Rows (Continued)

MERGE INTO copy_emp c

USING employees e

ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN

UPDATE SET

c.first_name = e.first_name,

c.last_name = e.last_name,

c.email = e.email,

c.phone_number = e.phone_number,

c.hire_date = e.hire_date,

c.job_id = e.job_id,

c.salary = e.salary,

c.commission_pct = e.commission_pct,

c.manager_id = e.manager_id,

c.department_id = e.department_id

WHEN NOT MATCHED THEN

INSERT VALUES(e.employee_id, e.first_name, e.last_name,

e.email, e.phone_number, e.hire_date, e.job_id,

e.salary, e.commission_pct, e.manager_id,

e.department_id);

Oracle9i: SQL for End Users A- 29

A-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Merging Rows

MERGE INTO copy_emp c
USING employees e
ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN
UPDATE SET

...
WHEN NOT MATCHED THEN
INSERT VALUES...;

SELECT *
FROM COPY_EMP;

no rows selected

SELECT *
FROM COPY_EMP;

20 rows selected.

Example of Merging Rows
The condition C.EMPLOYEE_ID = E.EMPLOYEE_ID is evaluated. Because the COPY_EMP table is
empty, the condition returns false: there are no matches. The logic falls into the WHEN NOT MATCHED
clause and the MERGE command inserts the rows of the EMPLOYEES table into the COPY_EMP table.

If rows existed in the COPY_EMP table and employee IDs matched in both tables (the COPY_EMP and
EMPLOYEES tables), the existing rows in the COPY_EMP table would be updated to match the
EMPLOYEES table.

Oracle9i: SQL for End Users A- 30

A-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Transactions

A database transaction consists of one of the
following:
• DML statements which constitute one consistent

change to the data
• One DDL statement
• One DCL statement

Database Transactions

The Oracle Server ensures data consistency based on transactions. Transactions give you more
flexibility and control when changing data, and they ensure data consistency in the event of user process
failure or system failure.

Transactions consist of DML statements that make up one consistent change to the data. For example, a
transfer of funds between two accounts should include the debit to one account and the credit to another
account in the same amount. Both actions should either fail or succeed together; the credit should not be
committed without the debit.

An implicit transaction is started when a DDL or DCL statement is issued. A DDL statement or a DCL
statement is automatically committed and therefore implicitly ends a transaction.

Statements in a Transaction

Type Description

Data manipulation
language (DML)

Consists of any number of DML statements that the Oracle Server
treats as a single entity or a logical unit of work

Data definition language
(DDL)

Consists of only one DDL statement

Data control language
(DCL)

Consists of only one DCL statement

Oracle9i: SQL for End Users A- 31

A-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Transactions

• Begin when the first DML SQL statement is
executed

• End with one of the following events:
– A COMMIT or ROLLBACK statement is issued

– A DDL or DCL statement executes (automatic commit)
– The user exits iSQL*Plus
– The system crashes

When Does a Transaction Start and End?

A transaction begins when the first DML statement is encountered, and ends when one of the following
occurs:

• A COMMIT or ROLLBACK statement is issued

• A DDL statement, such as CREATE, is issued

• A DCL statement is issued

• The user exits iSQL*Plus

• A machine fails or the system crashes

After one transaction ends, the next executable SQL statement automatically starts the next transaction.

A DDL statement or a DCL statement is automatically committed and therefore implicitly ends a
transaction.

Oracle9i: SQL for End Users A- 32

A-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of COMMIT
and ROLLBACK Statements

COMMIT and ROLLBACK statements enable you to:

• Ensure data consistency
• Preview data changes before making changes

permanent
• Group logically related operations

Oracle9i: SQL for End Users A- 33

A-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Transactions

SAVEPOINT B

SAVEPOINT A

DELETE

INSERT

UPDATE

INSERT

COMMITTime

Transaction

ROLLBACK
to SAVEPOINT B

ROLLBACK
to SAVEPOINT A

ROLLBACK

Explicit Transaction Control Statements
You can control the logic of transactions by using the COMMIT, SAVEPOINT, and ROLLBACK
statements.

Statement Description

COMMIT

Ends the current transaction by making all pending data changes
permanent

SAVEPOINT name Marks a savepoint within the current transaction

ROLLBACK ROLLBACK ends the current transaction by discarding all pending
data changes

ROLLBACK TO
SAVEPOINT name

ROLLBACK TO SAVEPOINT rolls back the current transaction to
the specified savepoint, thereby discarding any changes and or
savepoints created after the savepoint to which you are rolling back.
If you omit the TO SAVEPOINT clause, the ROLLBACK statement
rolls back the entire transaction. As savepoints are logical, there is
no way to list the savepoints you have created.

Oracle9i: SQL for End Users A- 34

A-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Rolling Back Changes
to a Marker

• Create a marker in a current transaction by using
the SAVEPOINT statement.

• Roll back to that marker by using the ROLLBACK
TO SAVEPOINT statement.

UPDATE...
SAVEPOINT update_done;
Savepoint created.
INSERT...
ROLLBACK TO update_done;
Rollback complete.

Rolling Back Changes to a Savepoint
You can create a marker in the current transaction by using the SAVEPOINT statement which
divides the transaction into smaller sections. You can then discard pending changes up to that
marker by using the ROLLBACK TO SAVEPOINT statement.

If you create a second savepoint with the same name as an earlier savepoint, the earlier savepoint
is deleted.

Note: SAVEPOINT is not ANSI standard SQL.

Oracle9i: SQL for End Users A- 35

Implicit Transaction Processing

Note: A third command is available in iSQL*Plus. The AUTOCOMMIT command can be toggled on or
off. If set to on, each individual DML statement is committed as soon as it is executed. You cannot roll
back the changes. If set to off, the COMMIT statement can still be issued explicitly. Also, the COMMIT
statement is issued when a DDL statement is issued or when you exit from iSQL*Plus.

System Failures

When a transaction is interrupted by a system failure, the entire transaction is automatically rolled back.
This prevents the error from causing unwanted changes to the data and returns the tables to their state at
the time of the last commit. In this way, the Oracle Server protects the integrity of the tables.

From iSQL*Plus, a normal exit from the session is accomplished by clicking on the Exit button. With
iSQL*Plus, a normal exit is accomplished by typing the command Exit at the prompt. Closing the
window is interpreted as an abnormal exit.

A-35 Copyright © Oracle Corporation, 2001. All rights reserved.

• An automatic commit occurs under the following
circumstances:
– DDL statement is issued
– DCL statement is issued
– Normal exit from iSQL*Plus, without explicitly issuing
COMMIT or ROLLBACK statements

• An automatic rollback occurs under an abnormal
termination of iSQL*Plus or a system failure.

Implicit Transaction Processing

Status Circumstances
Automatic commit DDL statement or DCL statement is issued.

iSQL*Plus exited normally, without explicitly issuing COMMIT or
ROLLBACK commands.

Automatic rollback Abnormal termination of iSQL*Plus or system failure.

Oracle9i: SQL for End Users A- 36

A-36 Copyright © Oracle Corporation, 2001. All rights reserved.

State of the Data
before COMMIT or ROLLBACK

• The previous state of the data can be recovered.
• The current user can review the results of the DML

operations by using the SELECT statement.

• Other users cannot view the results of the DML
statements by the current user.

• The affected rows are locked; other users cannot
change the data within the affected rows.

Committing Changes

Every data change made during the transaction is temporary until the transaction is committed.

State of the data before COMMIT or ROLLBACK statements are issued:

• Data manipulation operations primarily affect the database buffer; therefore, the previous state of
the data can be recovered.

• The current user can review the results of the data manipulation operations by querying the tables.

• Other users cannot view the results of the data manipulation operations made by the current user.
The Oracle Server institutes read consistency to ensure that each user sees data as it existed at the
last commit.

• The affected rows are locked; other users cannot change the data in the affected rows.

Oracle9i: SQL for End Users A- 37

A-37 Copyright © Oracle Corporation, 2001. All rights reserved.

State of the Data after COMMIT

• Data changes are made permanent in the database.
• The previous state of the data is permanently lost.
• All users can view the results.
• Locks on the affected rows are released; those rows

are available for other users to manipulate.
• All savepoints are erased.

Committing Changes (continued)
Make all pending changes permanent by using the COMMIT statement. Following a COMMIT statement:

• Data changes are written to the database.

• The previous state of the data is permanently lost.

• All users can view the results of the transaction.

• The locks on the affected rows are released; the rows are now available for other users to perform
new data changes.

• All savepoints are erased.

Oracle9i: SQL for End Users A- 38

A-38 Copyright © Oracle Corporation, 2001. All rights reserved.

• Make the changes.

• Commit the changes.

DELETE FROM employees
WHERE employee_id = 99999;
1 row deleted.

INSERT INTO departments
VALUES (290, ’Corporate Tax’, NULL, 1700);
1 row inserted.

Committing Data

COMMIT;
Commit complete.

Committing Changes (continued)
The slide example deletes a row from the EMPLOYEES table and inserts a new row into the
DEPARTMENTS table. It then makes the change permanent by issuing the COMMIT statement.

Example

Remove departments 290 and 300 in the DEPARTMENTS table, update a row in the COPY_EMP
table. Make the data change permanent.

DELETE FROM departments
WHERE department_id IN (290, 300);
2 rows deleted.

UPDATE copy_emp

SET department_id = 80

WHERE employee_id = 206;
1 row updated.
COMMIT;
Commit Complete.

Oracle9i: SQL for End Users A- 39

A-39 Copyright © Oracle Corporation, 2001. All rights reserved.

State of the Data after ROLLBACK

• Discard all pending changes by using the
ROLLBACK statement.

• Data changes are undone.
• Previous state of the data is restored.
• Locks on the affected rows are released.

DELETE FROM copy_emp;
22 rows deleted.
ROLLBACK;
Rollback complete.

Rolling Back Changes
Discard all pending changes by using the ROLLBACK statement. Following a ROLLBACK
statement:

• Data changes are undone.

• The previous state of the data is restored.

• The locks on the affected rows are released.

Example

While attempting to remove a record from the TEST table, you can accidentally empty the table.
You can correct the mistake, reissue the proper statement, and make the data change permanent.

Oracle9i: SQL for End Users A- 40

Rolling Back Changes (Continued)

DELETE FROM test;

25,000 rows deleted.

ROLLBACK;

Rollback complete.

DELETE FROM test

WHERE id = 100;

1 row deleted.

SELECT *

FROM test

WHERE id = 100;

No rows selected.

COMMIT;

Commit complete.

.

Oracle9i: SQL for End Users A- 41

A-41 Copyright © Oracle Corporation, 2001. All rights reserved.

Statement-Level Rollback

• If a single DML statement fails during execution,
only that statement is rolled back.

• The Oracle Server implements an implicit savepoint.
• All other changes are retained.
• The user should terminate transactions explicitly

by executing a COMMIT or ROLLBACK statement.

Statement-Level Rollbacks

Part of a transaction can be discarded by an implicit rollback if a statement execution error is detected. If
a single DML statement fails during execution of a transaction, its effect is undone by a statement-level
rollback, but the changes made by the previous DML statements in the transaction are not discarded.
They can be committed or rolled back explicitly by the user.

Oracle issues an implicit commit before and after any data definition language (DDL) statement. So,
even if your DDL statement does not execute successfully, you cannot roll back the previous statement
because the server issued a commit.

Terminate your transactions explicitly by executing a COMMIT or ROLLBACK statement.

Oracle9i: SQL for End Users A- 42

Read Consistency

Database users access the database in two ways:

• Read operations (SELECT statement)

• Write operations (INSERT, UPDATE, DELETE statements)

You need read consistency so that the following occur:

• The database reader and writer are ensured a consistent view of the data.

• Readers do not view data that is in the process of being changed.

• Writers are ensured that the changes to the database are done in a consistent way.

• Changes made by one writer do not disrupt or conflict with changes another writer is
making.

The purpose of read consistency is to ensure that each user sees data as it existed at the last
commit, before a DML operation started.

A-42 Copyright © Oracle Corporation, 2001. All rights reserved.

Read Consistency

• Read consistency guarantees a consistent view of
the data at all times.

• Changes made by one user do not conflict with
changes made by another user.

• Read consistency ensures that on the same data:
– Readers do not wait for writers
– Writers do not wait for readers

Oracle9i: SQL for End Users A- 43

A-43 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT *
FROM userA.employees;

Implementation of Read Consistency

UPDATE employees
SET salary = 7000
WHERE last_name = ’Goyal’;

Data
blocks

Rollback
segments

changed
and
unchanged
data
before
change
“old” data

User A

User B

Read
consistent
image

Implementation of Read Consistency

Read consistency is an automatic implementation. It keeps a partial copy of the database in rollback
segments.

When an insert, update, or delete operation is made to the database, the Oracle Server takes a copy of
the data before it is changed and writes it to a rollback segment.

All readers, except the one who issued the change, still see the database as it existed before the changes
started; they view the rollback segment’s “snapshot” of the data.

Before changes are committed to the database, only the user who is modifying the data sees the database
with the alterations; everyone else sees the snapshot in the rollback segment. This guarantees that
readers of the data read consistent data that is not currently undergoing change.

When a DML statement is committed, the change made to the database becomes visible to anyone
executing a SELECT statement. The space occupied by the “old” data in the rollback segment file is
freed for reuse.

If the transaction is rolled back, the changes are undone:

• The original, older version, of the data in the rollback segment is written back to the table.

• All users see the database as it existed before the transaction began.

Oracle9i: SQL for End Users A- 44

A-44 Copyright © Oracle Corporation, 2001. All rights reserved.

Locking

In an Oracle database, locks:
• Prevent destructive interaction between concurrent

transactions
• Require no user action
• Automatically use the lowest level of restrictiveness
• Are held for the duration of the transaction
• Oracle database locks are of two types:

– Explicit locking
– Implicit locking

What Are Locks?

Locks are mechanisms that prevent destructive interaction between transactions accessing the same
resource, either a user object (such as tables or rows) or a system object not visible to users (such as
shared data structures and data dictionary rows).

How the Oracle Database Locks Data

Oracle locking is performed automatically and requires no user action. Implicit locking occurs for SQL
statements as necessary, depending on the action requested. Implicit locking occurs for all SQL
statements except SELECT.

The users can also lock data manually, which is called explicit locking.

Oracle9i: SQL for End Users A- 45

A-45 Copyright © Oracle Corporation, 2001. All rights reserved.

Implicit Locking

• Two lock modes
– Exclusive: Locks out other users
– Share: Allows other users to access

• High level of data concurrency
– DML: Table share, row exclusive
– Queries: No locks required
– DDL: Protects object definitions

• Locks held until commit or rollback

DML Locking

When performing data manipulation language (DML) operations, the Oracle Server provides data
concurrency through DML locking. DML locks occur at two levels:

• A share lock is automatically obtained at the table level during DML operations. Share lock mode
allows several transactions to acquire share locks on the same resource.

• An exclusive lock is acquired automatically for each row modified by a DML statement.
Exclusive locks prevent the row from being changed by other transactions until the transaction is
committed or rolled back. This lock ensures that no other user can modify the same row at the
same time and overwrite changes not yet committed by another user.

• DDL locks occur when modifying a database object such as a table.

Oracle9i: SQL for End Users A- 46

Summary

In this lesson, you should have learned how to manipulate data in the Oracle database by using the
INSERT, UPDATE, and DELETE statements. Control data changes by using the COMMIT,
SAVEPOINT, and ROLLBACK statements.

The Oracle Server guarantees a consistent view of data at all times.

Locking can be implicit or explicit.

A-46 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Description

Adds a new row to the table

Modifies existing rows in the table

Removes existing rows from the table

Conditionally inserts or updates data in a table

Makes all pending changes permanent

Allows a rollback to the savepoint marker

Discards all pending data changes

Statement

INSERT

UPDATE

DELETE

MERGE

COMMIT

SAVEPOINT

ROLLBACK

In this lesson, you should have learned how to use
DML statements and control transactions.

Oracle9i: SQL for End Users A- 47

A-47 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice A Overview

This practice covers the following topics:
• Inserting rows into the tables
• Updating and deleting rows in the table
• Controlling transactions

Practice A Overview
In this practice, you will add rows to the MY_EMPLOYEE table, update and delete data from the table,
and control your transactions.

Oracle9i: SQL for End Users A- 48

Practice A
Insert data into the MY_EMPLOYEE table.

1. Run the statement in the labA_1.sql script to build the MY_EMPLOYEE table that will be used
for the lab.

2. Describe the structure of the MY_EMPLOYEE table to identify the column names.

3. Add the first row of data to the MY_EMPLOYEE table from the following sample data. Do not list the
columns in the INSERT clause.

4. Populate the MY_EMPLOYEE table with the second row of sample data from the preceding list. This
time, list the columns explicitly in the INSERT clause.

5. Confirm your addition to the table.

ID LAST_NAME FIRST_NAME USERID SALARY

1 Patel Ralph rpatel 895

2 Dancs Betty bdancs 860

3 Biri Ben bbiri 1100

4 Newman Chad cnewman 750

5 Ropeburn Audrey aropebur 1550

Oracle9i: SQL for End Users A- 49

Practice A (continued)
6. Write an insert statement in a text file named loademp.sql to load rows into the

MY_EMPLOYEE table. Concatenate the first letter of the first name and the first seven characters
of the last name to produce the userid.

7. Populate the table with the next three rows of sample data by running the insert statement in the
script that you created.

8. Confirm your additions to the table.

9. Make the data additions permanent.

Update and delete data in the MY_EMPLOYEE table.

10. Change the last name of employee 3 to Drexler.

11. Change the salary to 1000 for all employees with a salary less than 900.

12. Verify your changes to the table.

13. Delete Betty Dancs from the MY_EMPLOYEE table.

14. Confirm your changes to the table.

Oracle9i: SQL for End Users A- 50

Practice A (continued)

15. Commit all pending changes

Control data transaction to the MY_EMPLOYEE table.
16. Populate the table with the to add Betty Dancs data by using the script that you created in step 6.
17. Confirm your addition to the table.

18. Mark an intermediate point in the processing of the transaction.
19. Empty the entire table.
20. Confirm that the table is empty.
21. Discard the most recent DELETE operation without discarding the earlier INSERT operation.
22. Confirm that the the most recent DELETE has been discarded.

Copyright © Oracle Corporation, 2001. All rights reserved.

Reporting with SQL*Plus

Oracle9i: SQL for End Users B- 2

B-2 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL*Plus SET Command Variables

• The SET command affects the way that SQL*Plus
runs commands

• SET commands can be used to control:
– Number of blank lines between records
– Number of spaces between columns
– Characters used to underline column headings
– Value to display for null values

SQL*Plus SET Command Variables

SQL*Plus enables you to execute SQL commands and PL/SQL blocks, and to perform many additional
tasks as well. Through SET commands, you can control the format in which the output of a query is
displayed to the user.

Oracle9i: SQL for End Users B- 3

B-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Additional SET Command Variables

• RECSEP
• RECSEPCHAR
• SPACE
• UNDERLINE
• WRAP
• NULL
• HEADSEP
• NEWPAGE

SET Command Values
SET Value Description
RECSEP {WR[APPED]| EA[CH]\OFF} Controls the printing of record separators. WRAPPED prints a

record separator only after wrapped lines; EACH prints a record
separator following each row.

RECSEPCHAR{_|c} Character printed between records

SPA[CE] {1|n}

Sets the number of spaces between columns

UND[ERLINE] {-|C|ON|OFF} Sets the characters to use to underline column headings

WRA[P] {OFF|ON} Controls the truncation of data item display

NULL text Sets the text that represents a null value in the result of a SQL
SELECT statement

HEADSEP Specifies the character to be used between column headings

NEWP[AGE] {1|n} Sets the number of blank lines before the top of each page
(0=formfeed)

Oracle9i: SQL for End Users B- 4

B-4 Copyright © Oracle Corporation, 2001. All rights reserved.

EMPLOYEE_ID LAST_NAME
----------- -------------------------

100 King
__

101 Kochhar
__

102 De Haan
__

Using SET Command Variables

SET RECSEP and SET RECSEPCHAR _

SET RECSEP EACH
SET RECSEPCHAR
SELECT employee_id, last_name
FROM employees
WHERE employee_id < 103;

Using SET RECSEP EACH and SET RECSEPCHAR _

The example in the slide uses two SET commands to separate each row returned by the SELECT
statement. The SET RECSEP EACH command prints one blank line between each record in the
output. The SET RECSEPCHAR_ command changes the record separator character from a space
to an underline.

Oracle9i: SQL for End Users B- 5

B-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Using SET Command Variables

SET SPACE and SET UNDERLINE

EMPLOYEE_ID LAST_NAME SALARY
=========== ========================= ==========

100 King 24000
101 Kochhar 17000
102 De Haan 17000

SET SPACE 2
SET UNDERLINE =
SELECT employee_id, last_name, salary
FROM employees
WHERE employee_id < 103;

Using SET SPACE and SET UNDERLINE

The example in the slide uses two SET commands to alter the spacing between the columns
returned by the SELECT statement. The SET SPACE 2 command places two spaces between
columns. The SET UNDERLINE = command sets the underline character beneath column
headings to an equal sign.

Oracle9i: SQL for End Users B- 6

B-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Using SET Command Variables

SET NULL Null
SELECT employee_id, last_name, commission_pct
FROM employees
WHERE department_id IN (20,80);

SET NULL

EMPLOYEE_ID LAST_NAME
----------- ----------------------

149 Zlotkey
174 Abel
176 Taylor
201 Hartstein
202 Fay

COMMISSION_PCT

.2
.3
.2

Null
Null

Using the Additional SET Command Variables

The example in the slide uses the SET NULL command to display all null values as Null.

Oracle9i: SQL for End Users B- 7

B-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Using SET Command Variables

SET NEWPAGE 3
SELECT employee_id, last_name, manager_id
FROM employees
WHERE employee_id < 103;

EMPLOYEE_ID LAST_NAME MANAGER_ID
----------- ------------------------- ----------

100 King
101 Kochhar 100
102 De Haan 100

SET NEWPAGE

Using SET NEWPAGE

The example in the slide uses the SET NEWPAGE 3 command to set the number of blank lines
that are displayed before each page in the output to 3.

Oracle9i: SQL for End Users B- 8

B-8 Copyright © Oracle Corporation, 2001. All rights reserved.

The TTITLE and BTITLE Commands

Display headers and footers:

TTI[TLE] [text|OFF|ON]

TTITLE ’Salary|Report’

Set the report header:

Set the report footer:

BTITLE ’Confidential’

Using the TTITLE and BTITLE Commands

Use the TTITLE command to format page headers and the BTITLE command for footers. Footers
appear at the bottom of the page according to the PAGESIZE value.

The syntax for BTITLE and TTITLE is identical. Only the syntax for TTITLE is shown. You can use
the vertical bar (|) to split the text of the title across several lines.

In the syntax:

text Represents the title text; enter single quotes if the text is more than one word.

The TTITLE example in the slide sets the report header to display Salary centered on one line and
Report centered below it. The BTITLE example sets the report footer to display Confidential.

Note: The slide gives an abridged syntax for TTITLE and BTITLE. Various options for TTITLE and
BTITLE are covered in other Oracle SQL courses

Use TTITLE OFF and BTITLE OFF to clear header and footer settings.

Oracle9i: SQL for End Users B- 9

B-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TTITLE Command

TTITLE ’Salary|Report’
SELECT employee_id, last_name, salary, manager_id
FROM employees;

Tue Jun 19 page 1
Salary
Report

EMPLOYEE_ID LAST_NAME SALARY MANAGER_ID
----------- ---------------------- ---------- ----------

100 King 24000
101 Kochhar 17000 100
102 De Haan 17000 100
103 Hunold 9000 102

. . .
20 rows selected.

Oracle9i: SQL for End Users B- 10

B-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the BTITLE Command

BTITLE ’Confidential’
SELECT employee_id, last_name, salary, manager_id
FROM employees;

EMPLOYEE_ID LAST_NAME SALARY MANAGER_ID
----------- ------------------- ---------- ----------

100 King 24000
. . .

205 Higgins 12000 101
206 Gietz 8300 205

Confidential

20 rows selected.

Using the BTITLE Command

The example in the slide uses the BTITLE command to add the page footer Confidential to the
bottom of each page of the report.

Tips for Using BTITLE and TTITLE

• Split the header or footer onto several lines with the vertical bar (|).

• TTITLE and BTITLE remain in effect until reset to another title or turned off, or until the
SQL session is over.

• By default, the TITLE command centers the heading, displays the date in the left corner, and
displays the page number in the right corner.

The following example puts the title on the left:

TTITLE LEFT 'Departments‘
SELECT department_name
FROM departments;
Departments
DEPARTMENT_NAME

Administration
. . .
8 rows selected.

Oracle9i: SQL for End Users B- 11

B-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Additional COLUMN
Command Options

Control display of columns and headings:

• NEW_VALUE: Prints data in the title
• NOPRINT: Excludes data from output
• CLEAR: Resets column display attributes

COL[UMN] [{column|alias} [option]]

COLUMN Command Options

Option Description
NEW_V[ALUE] Specifies a variable to hold a column value that can be used in

the TTITLE command
NOPRI[NT]
PRI[NT]

Controls whether or not a column is printed

CLE[AR]
DEF[AULT]

Resets the display attributes for the column to the default
values

Oracle9i: SQL for End Users B- 12

B-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NEW_VALUE Command

COLUMN department_id new_value deptnum FORMAT 99
TTITLE SKIP 1 CENTER ’Report for Dept:’ deptnum -
SKIP 2 CENTER
BREAK on department_id SKIP PAGE ON department_id
SELECT last_name, manager_id, department_id, salary
FROM employees
ORDER BY department_id;

Using the NEW_VALUE Option of the COLUMN Command

The example in the slide creates a report that separates the output onto separate pages according to
department. The statement uses the NEW_VALUE COLUMN option to create a variable (deptnum)
for the department number in the report, which is then used in the TTITLE statement as part of the
header for each page. The BREAK ON command creates new sections in the report for each
department.

Report for Dept: 10

LAST_NAME MANAGER_ID DEPARTMENT_ID SALARY
------------------------- ---------- ------------- ----------
Whalen 101 10 4400

Report for Dept: 20
LAST_NAME MANAGER_ID DEPARTMENT_ID SALARY
------------------------- ---------- ------------- ----------
Hartstein 100 20 13000
Fay 201 6000
. . .

20 rows selected.

Oracle9i: SQL for End Users B- 13

B-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NOPRINT Command

COLUMN department_id NOPRINT new_value deptnum FORMAT 99
TTITLE SKIP 1 ’Report for Dept:’ deptnum -
SKIP 2 CENTER
BREAK ON department_id SKIP PAGE ON department_id
SELECT last_name, manager_id, department_id, salary
FROM employees
ORDER BY department_id;

Using the NOPRINT Option of the COLUMN Command

The NOPRINT COLUMN command option provides a method of not displaying the column that is
used in the NEW_VALUE command, in this case DEPARTMENT_ID. The example in the slide
creates the same report as the example in the previous slide but uses the NOPRINT COLUMN
option to hide the DEPARTMENT_ID column in the output.

Report for Dept: 10

LAST_NAME MANAGER_ID SALARY
------------------------- ---------- ----------
Whalen 101 4400
Report for Dept: 20
LAST_NAME MANAGER_ID SALARY

------------------------- ---------- ----------
Hartstein 100 13000
Fay 201 6000
. . .
20 rows selected.

Oracle9i: SQL for End Users B- 14

B-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the CLEAR Command

Use the CLEAR command to reset the display
attributes for columns and headings to the default
values.

COLUMN department_id CLEAR
COLUMN department_name CLEAR
CLEAR BREAK

Using the CLEAR command

The CLEAR command resets or erases the current value or setting for the specified option. The examples
on the slide clear the settings for the DEPARTMENT_ID and DEPARTMENT_NAME columns. CLEAR
BREAK removes the break definition set by the BREAK command.

Oracle9i: SQL for End Users B- 15

B-15 Copyright © Oracle Corporation, 2001. All rights reserved.

The COMPUTE Command

Calculates and displays summary lines

Uses various standard computations including:
• AVG

• COUNT

• MAXIMUM

• MINIMUM

COMP[UTE] [function [LABEL labelname] …
OF {expr|column|alias} …
ON {expr|column|alias|REPORT|FORM}]

The COMPUTE Command

The COMPUTE command calculates and prints summary lines using the following standard
computations on subsets of selected rows, or lists all COMPUTE definitions.

Function Computes Applies to Data types
AVG Average of non null values NUMBER

COUNT Count of non null values All types

MAX[IMUM] Maximum value NUMBER, CHAR, VARCHAR2

MIN[IMUM] Minimum value NUMBER, CHAR, VARCHAR2

STD Standard deviation of non null values NUMBER

SUM Sum of non null values NUMBER

VAR[IANCE] Variance on non null values NUMBER

Oracle9i: SQL for End Users B- 16

B-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the COMPUTE Command
BREAK ON JOB_ID SKIP 1
COMPUTE SUM OF salary ON job_id
SELECT job_id, last_name, salary
FROM employees
WHERE job_id IN (’ST_CLERK’, ’SA_REP’)
ORDER BY job_id, salary;

JOB_ID LAST_NAME SALARY
---------- ------------------------- ----------
SA_REP Grant 7000

Taylor 8600
Abel 11000

********** ----------
sum 26600

ST_CLERK Vargas 2500
. . .
7 rows selected.

The COMPUTE Command (continued)

The example in the slide uses the COMPUTE command to calculate and display the total salary for
each job title listed in the WHERE clause. The result is a list of employees for each job title, with a
salary total at the end of each job section. The sectioning of the output can be performed on any
column in the table. The ORDER BY clause is used on the JOB_ID column to ensure that jobs are
grouped together for each total.

Oracle9i: SQL for End Users B- 17

B-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using BREAK with COMPUTE
BREAK ON department_id SKIP 2
COMPUTE MAX OF salary ON department_id
SELECT department_id, last_name, salary
FROM employees
WHERE job_id IN (’ST_CLERK’, ’SA_REP’)
ORDER BY department_id, salary;

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------

50 Vargas 2500
Matos 2600
. . .

************* ----------
maximum 3500

80 Taylor 8600
. . .
7 rows selected.

Using BREAK with the COMPUTE Command

The example in the slide uses the BREAK and SKIP options with the COMPUTE command to
display blank lines between each total.

The “maximum” line generated by the COMPUTE statement represents the highest salary of a
clerk, or sales representative in each department.

Oracle9i: SQL for End Users B- 18

B-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Using LABEL with COMPUTE

BREAK ON department_id SKIP 2
COMPUTE MAX LABEL Max_Sal OF salary ON department_id
SELECT department_id, last_name, salary
FROM employees
WHERE job_id IN (’ST_CLERK’, ’SA_REP’)
ORDER BY department_id, salary;

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------

50 Vargas 2500
Matos 2600
Davies 3100
Rajs 3500

************* ----------
Max_Sal 3500
. . .
7 rows selected.

Using LABEL with the COMPUTE Command

The example in the slide uses the LABEL option with the COMPUTE command to rename the
maximum row created by the COMPUTE statement.

Oracle9i: SQL for End Users B- 19

B-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of Creating a
Report Script

COLUMN job_id NOPRINT new_value jobname FORMAT A9
TTITLE -
SKIP 1 CENTER ’Salaries for’ -
SKIP 1 CENTER jobname -
SKIP 2
BREAK on job_id SKIP PAGE
COMPUTE AVG LABEL ’’ OF salary ON job_id
BTITLE ’Top Secret’
SELECT job_id, last_name, hire_date, salary
FROM employees
ORDER BY job_id, salary;

4

6

1

3

2

5

How to Create a Report Script
1. Use the NEW_VALUE COLUMN command to create a variable to hold the job title for

each page of the report.

2. Use the TTITLE command to create a heading for each report page:

• Add a centered heading, Salaries for job name, to the top of the report. Split the heading
onto two lines.

• Leave a blank line.

3. Use the BREAK command to start a new report page for each job title.

4. Use the COMPUTE command to calculate the average salary for each job.

5. Use the BTITLE command to add a Top Secret footer to each page of the report.

6. Add the query for the report to list all employees. Group the output by job to ensure
that the rows are listed correctly above the averages for each job.

7. Save the script to a file.

8. Use the START command to start the script.

Oracle9i: SQL for End Users B- 20

B-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Output of Report Script

Salaries for
AC_ACCOUNT

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
Gietz 07-JUN-94 8300

8300

Top Secret

. . .
14 rows selected.

4

3

2
1

6

5

Output of Report Script

1. The job ID changes for each page of the report.

2. The heading appears centered above the report.

3. A new page is started when all employees for a job have been listed and the average salary has
been calculated.

4. The average salary is computed for the job listed.

5. The Top Secret footer appears at the bottom of each page of the report.

6. All employees for each job title are listed.

Practice Solutions

C

Oracle9i: SQL for End Users C- 2

Practice 1 Solutions

1. Initiate an iSQL*Plus session by using the user ID and password provided by the instructor.

2. SQL commands are always held in the buffer.

True

3. iSQL*Plus commands are used to query data.

False. The SQL command SELECT is used to query data.

4. Show the structure of the DEPARTMENTS table.

DESC departments

5. Select all information from the DEPARTMENTS table.

SELECT *

FROM departments;

6. Show the structure of the EMPLOYEES table.

DESC employees

Using this table, perform the following actions:

7. Display the last name and hire date for each employee.

SELECT last_name, hire_date

FROM employees;

8. Display the hire date and last name for each employee, with the hire date appearing first.

SELECT hire_date, last_name

FROM employees;

Oracle9i: SQL for End Users C- 3

Practice 1 Solutions (continued)

9. Display the last name, hire date, and annual salary, excluding commission, for
each employee. Label the annual salary column as ANNUAL

SELECT last_name, hire_date, salary*12 ANNUAL

FROM employees;

10. List all the specific job ids that exist in the organization.

SELECT DISTINCT job_id

FROM employees;

11. Select the last_name, department ID, and hire date for all employees.
Display the data as shown:

SELECT last_name||’ has worked in department

’||department_id||’ since ’||hire_date AS

"WHO, WHERE, AND WHEN"

FROM employees;

Oracle9i: SQL for End Users C- 4

Practice 2 Solutions

1. You can order by a column that you have not selected.

True

2. This statement will execute successfully.
SELECT *

FROM employees

WHERE salary*12=9600;

True. Demonstrate this, if required.

3. Display the last name of the with the employee ID 104.

SELECT last_name

FROM employees

WHERE employee_id=104;

4. Display the last name, manager ID, and salary for all employees in department 20.

SELECT last_name, manager_id,salary

FROM employees

WHERE department_id = 20;

5. Display the last name and hire date of all employees whose last name begins with the letter
H.

.
SELECT last_name, hire_date

FROM employees

WHERE last_name LIKE ’H%’;

6. Display the last name, manager ID, and salary for all employees whose salary is in the
range of $6000 through $8000.

SELECT last_name, manager_id, salary

FROM employees

WHERE salary BETWEEN 6000 AND 8000;

Oracle9i: SQL for End Users C- 5

Practice 2 Solutions (continued)

7. Display the employee ID and last name for all clerks (JOB_ID = ST_CLERK) and who
work for manager 100 or 124.

SELECT employee_id, last_name

FROM employees

WHERE job_id=’ST_CLERK’

AND manager_id IN (100,124);

8. Display the employee ID, last name, and manager ID for all employees whose salary is
greater than $2500 and who work in department 50.

SELECT employee_id, last_name, manager_id

FROM employees

WHERE salary>2500

AND department_id=50;

9. Display the last names and salary for all employees who work for the manager with the
manager ID 124, starting with the employee with the highest salary and ending with the
employee with the lowest salary.

.

SELECT last_name, salary

FROM employees

WHERE manager_id =124

ORDER BY salary DESC;

10. Display the last name, job ID, and salary for all non sales employees who are earning less
than $2000 or more than $15000.

SELECT last_name, job_id, salary

FROM employees

WHERE job_id <> ’SA_MAN’

AND salary NOT BETWEEN 2000 AND 15000;

Oracle9i: SQL for End Users C- 6

Practice 3 Solutions

1. Single-row functions work on many rows to produce a single result.

False

2. Display the last name and salary plus $600 for all employees in department 20.
The name should be displayed in capitals.

SELECT UPPER(last_name) AS NAME, salary + 600

FROM employees

WHERE department_id = 20;

3. Display the employee ID, last name, and salary increased by 15% and expressed as a whole
number, for all employees in department 20. Round up any cents in the new salary amounts to the
nearest dollar. Give the column the heading, SAL+15%, as shown:

SELECT employee_id, last_name,

ROUND(salary * 1.15) AS "SAL+15%"

FROM employees

WHERE department_id=20;

4. Produce the following list of employees and their jobs.

SELECT last_name||’ works as a ’

||LOWER(job_id) AS "Employees and Jobs"

FROM employees;

5. Display the employee ID, last name, monthly commission percentage, and
monthly commission pct rounded to two decimal places for all sales people.

(JOB_ID = ‘SA_MAN’ or JOB_ID =‘SA_REP’)

Note: COMMISSION_PCT is an annual figure.

SELECT employee_id, last_name,commission_pct/12,

ROUND(commission_pct/12, 2) COMM_ROUNDED

FROM employees

WHERE job_id in (’SA_MAN’, ’SA_REP’);

Oracle9i: SQL for End Users C- 7

Practice 3 Solutions (continued)

6. Produce a one-column report showing the first name and last name of each employee separated by a
dash (-). Give the column the heading Employee Details, as shown:

SELECT first_name||’- ’||last_name AS

"Employees Details"

FROM Employees;

7. Display the last name, job ID, and total annual income (including commission where
applicable) for all employees.

SELECT last_name, job_id,

salary * 12 * (1+NVL(commission_pct,0)) ANNUAL_SAL

FROM employees;

8. Display the employee number, name, and salary plus the commission amount increased by 20% for all
employees.

SELECT employee_id,last_name,

salary*(1+NVL(commission_pct*0.2,0)) "NEW SALARY"

FROM employees;

Oracle9i: SQL for End Users C- 8

Practice 4 Solutions

1. Display the last name and hire date of all employees with the job ID IT_PROG. Display the hire
date as shown:

SELECT last_name, TO_CHAR(hire_date,’MM/DD/YYYY’) HIRED_IN

FROM employees

WHERE job_id =’IT_PROG’;

2. Determine the annual salary (excluding commission) and six-month review date for all employees
with the job ID ST_CLERK. Give the column an alias of REVIEW.

SELECT last_name, salary*12,

ADD_MONTHS(hire_date,6) REVIEW

FROM employees

WHERE job_id =’ST_CLERK’;

3. Display the last name and number of days between today and the start date for all employees with
the letter G as the first letter of their name.

SELECT last_name, SYSDATE-hire_date DAYS_EMPLOYED

FROM employees

WHERE last_name LIKE ’G%’;

4. Display the number of months that Taylor has been employed with the company. Give the column
an alias of MONTHS

SELECT last_name, MONTHS_BETWEEN(SYSDATE,hire_date) MONTHS

FROM employees

WHERE last_name=’Taylor’;

Oracle9i: SQL for End Users C- 9

Practice 4 Solutions (continued)

5. For employees in department 20, display the last name and hire date as shown. Specify the alias as
DATE_HIRED after your expression. Pay particular attention to the case used in the letters of the
hire date.

SELECT last_name,

TO_CHAR(hire_date,’fmMonth, Ddspth YYYY’) AS
DATE_HIRED

FROM employees

WHERE department_id=20;

6. For employees in department 60, display each employee’s last name, hire date, and salary review
date. Assume that the review date is one year after the hire date. Give the review date column an
alias of REVIEW. Order the output in ascending order of hire date.

SELECT last_name, TO_CHAR(hire_date,’DD-MON-YYYY’)
HIRE_DATE,

TO_CHAR(ADD_MONTHS(hire_date,12),’DD-MON-YYYY’)
REVIEW

FROM employees

WHERE department_id=60

ORDER BY hire_date;

7. Display the last names of all employees who were hired after March 15, 1998. Use the date format
03/15/1998.

SELECT last_name

FROM employees

WHERE HIRE_DATE > TO_DATE(’03/15/1998’,’MM/DD/YYYY’);

8. Create a single-column report that lists sales representatives (JOB_ID = ‘SA_REP’) and their
monthly salaries as shown in the following output. Pay particular attention to the case used in the
letters and the formatting of the salary amounts.

SELECT INITCAP(last_name)||

’ earns’||TO_CHAR(salary,’$99,999’)||’ a month’

MONTHLYSALARIES

FROM employees

WHERE job_id =’SA_REP’;

Oracle9i: SQL for End Users C- 10

Practice 4 Solutions (continued)

9. Display the date of the first Monday in the year 2001. Give the column the heading as Monday.

SELECT NEXT_DAY(’31-DEC-2000’,’Monday’) AS "Monday"

FROM DUAL;

10. Display the last names and hire dates of all employees who have been with the company for more than 10
years.

SELECT last_name, TO_CHAR(hire_date,’DD-MON-YYYY’) HIREDATE

FROM employees

WHERE MONTHS_BETWEEN(SYSDATE,HIRE_DATE)/12>10;

11. Display the last name and hire date for all employees who were hired in 1987.
SELECT last_name, TO_CHAR(hire_date,’DD-MON-YYYY’) HIREDATE

FROM employees

WHERE TO_CHAR(hire_date,’DD-MON-YYYY’) LIKE ’%1987’;

12. Display the last name and hire date for all employees whose job ID is ST_CLERK, starting with the clerk
who was hired first and ending with the clerk who was hired most recently.

SELECT last_name, TO_CHAR(hire_date,’DD-MON-YYYY’) HIREDATE

FROM employees

WHERE job_id =’ST_CLERK’

ORDER BY hire_date;

13. Display the last name, hire date, hire date rounded to the MONTH, and hire date rounded to the YEAR
for employees with an employee ID is greater than 170. The column headings should be as given below.

SELECT last_name, TO_CHAR(hire_date,’DD-MON-YYYY’) HIREDATE,

TO_CHAR(round(hire_date,’MONTH’),’DD-MON-YYYY’)
ROUND_MONTH,

TO_CHAR(round(hire_date,’YEAR’),’DD-MON-YYYY’) ROUND_YEAR

FROM employees

WHERE employee_id > 170;

Oracle9i: SQL for End Users C- 11

Practice 5 Solutions

1. Display the last name, department ID, and department name of all employees, in department name order.
SELECT e.last_name, e.department_id, d.department_name

FROM employees e, departments d

WHERE e.department_id=d.department_id

ORDER BY d.department_name;

2. Display the last name, salary, and department name of all employees who earn more than

$10,000.
SELECT e.last_name, e.salary, d.department_name

FROM employees e, departments d

WHERE e.department_id=d.department_id

AND e.salary>10000;

3. Display the last name, salary, and department name for all employees in the accounting department.
SELECT e.last_name, e.salary, d.department_name

FROM employees e, departments d

WHERE e.department_id=d.department_id

AND d.department_name=’Accounting’;

4. Display the last name, job, department name, and location ID for all employees whose office has the
location ID 1400.

SELECT e.last_name, e.job_id,

d.department_name, d.location_id

FROM employees e, departments d

WHERE e.department_id=d.department_id

AND d.location_id=1400;

Oracle9i: SQL for End Users C- 12

Practice 5 Solutions (continued)

5. Display a list of employees including last name, job, salary, and grade level.

SELECT e.last_name, e.job_id, e.salary, j.grade_level

FROM employees e, job_grades j

WHERE e.salary BETWEEN j.lowest_sal AND j.highest_sal;

6. Using question 5, show only employees in grade C.

SELECT e.last_name, e.job_id, e.salary, j.grade_level

FROM employees e, job_grades j

WHERE e.salary BETWEEN j.lowest_sal AND j.highest_sal

AND j.grade_level=’C’;

7. For employees in department 20, display the last name, department ID, the name of the
employee’s manager and department ID of their manager.

SELECT e.last_name, e.department_id,

m.last_name MANAGER, m.department_id

FROM employees e, employees m

WHERE e.manager_id=m.employee_id

AND e.department_id=20;

8. Find all employees who joined the company before their manager.

SELECT e.last_name, to_char(e.hire_date,’DD-MON-YYYY’)

HIREDATE, m.last_name MGR,

to_char(m.hire_date,’DD-MON-YYYY’) HIREDATE

FROM employees e, employees m

WHERE e.manager_id=m.employee_id

AND e.hire_date<m.hire_date;

9. For each employee, display the last name, the last name of the employee’s manager and the manager’s
department name.

SELECT e.last_name, m.last_name MGR,

d.department_name MGR_DEPT

FROM employees e, employees m, departments d

WHERE e.manager_id=m.employee_id

AND m.department_id=d.department_id;

Oracle9i: SQL for End Users C- 13

Practice 5 Solutions (continued)

10. Display the last name and the last name of the manager for all employees who work in the same
department as their manager.

SELECT e.last_name, m.last_name MGR

FROM employees e, employees m

WHERE e.manager_id=m.employee_id

AND e.department_id=m.department_id;

11. Display the employee ID, last name, department ID, department name,and city for all employees
those last names begin with H.

SELECT employee_id, last_name, e.department_id,

department_name, city

FROM employees e , departments d, locations l

WHERE e.department_id = d.department_id

AND d.location_id = l.location_id and

last_name like ’H%’

Oracle9i: SQL for End Users C- 14

Practice 6 Solutions

1. Determine the validity of the following statements. Circle either True or False.

a. Group functions work across many rows to produce one result.

True

b. Group functions include nulls in calculations.

False

2. Find the earliest hire date of an employee.

SELECT TO_CHAR(MIN(hire_date),’DD-MON-YYYY’) EARLIEST

FROM employees;

3. Find the highest salary paid to an employee.

SELECT MAX(salary) MAX_SALARY

FROM employees;

4. Find the total monthly salary paid to all clerks.

SELECT SUM(salary) CLERK_PAYROLL

FROM employees

WHERE job_id=’ST_CLERK’;

5. Display the maximum salary, the minimum salary, and the difference between them for staff who
were hired in 1999.

SELECT MAX(salary), MIN(salary),

MAX(salary)-MIN(salary) DIFFERENCE

FROM employees

WHERE hire_date

BETWEEN TO_DATE(’01-JAN-1999’,’DD-MON-YYYY’) AND

TO_DATE(’31-DEC-1999’,’DD-MON-YYYY’);

6. Find the minimum, average, and maximum salaries of all employees.

SELECT MIN(salary) LOWEST, AVG(salary) AVERAGE,

MAX(salary) HIGHEST

FROM employees;

Oracle9i: SQL for End Users C- 15

Practice 6 Solutions (continued)

7. Display the minimum and maximum salary for each job ID.

SELECT job_id, MIN(salary) MIN_SAL, MAX(salary) MAX_SAL

FROM employees

GROUP BY job_id;

8. Determine the number of managers without listing them.

SELECT count(distinct(manager_id)) "No. of managers"

FROM employees;

9. Find the average monthly salary and average annual income for each job ID. Remember that only salesmen
earn commission.

SELECT job_id, AVG(salary) Average_Salary,

AVG(12*salary*(1+NVL(commission_pct,0)))

Average_Annual_Income

FROM employees

GROUP BY job_id;

10. Display the department numbers and the total number of employees working for each department. Order the
results in the descending order of the number of employees in each department.

SELECT department_id,count(*) TOTAL_EMPLOYEES

FROM employees

GROUP BY department_id

ORDER BY count(*) DESC;

Oracle9i: SQL for End Users C- 16

1. Answer the following questions:

a. Which query runs first with a subquery?

Inner query.
b. You cannot use the equal operator if the inner query returns more than one value.

i. If the answer is true, why, and what operator should be used ?

ii. If the answer is false, why

True
The equal operator expects one value in return. Use the IN operator.

2. Display the last name, manager ID, and salary for all employees in the same department as
Matos.

SELECT last_name, manager_id, salary

FROM employees

WHERE department_id =

(SELECT department_id

FROM employees

WHERE last_name =’Matos’);

3. Display the employee ID, last name, and salary for all employees with a salary above the
average salary.

SELECT employee_id, last_name, salary

FROM employees

WHERE salary >

(SELECT AVG(salary)

FROM employees);

4. Display the last name and salary for all employees who have the same manager as
Zlotkey.

SELECT last_name, salary

FROM employees

WHERE manager_id =

(SELECT manager_id

FROM employees

WHERE last_name =’Zlotkey’);

Practice 7 Solutions

Oracle9i: SQL for End Users C- 17

Practice 7 Solutions (continued)

5. Find the employees who earn the same salary as the highest salary in each

job ID. Sort in descending order of the salary.

SELECT last_name, job_id, salary Highest_salary

FROM employees

WHERE salary IN

(SELECT MAX(salary)

FROM employees

GROUP BY job_id)

ORDER BY salary DESC;

6. Find the employees who earn the same salary as the lowest salary for a job.
Sort in ascending order of the salary.

SELECT last_name, job_id, salary LOWEST_SALARY

FROM employees

WHERE salary IN

(SELECT MIN(salary)

FROM employees

GROUP BY job_id)

ORDER BY salary;

Oracle9i: SQL for End Users C- 18

Practice 7 Solutions (continued)

7. Display all the employees who have worked longer than Gietz.

SELECT last_name, TO_CHAR(hire_date,’DD-MON-YYYY’) HIREDATE

FROM employees

WHERE hire_date < (SELECT hire_date

FROM employees

WHERE last_name =’Gietz’);

8. Display the last name and job ID for all the employees (excluding sales people) with an
annual salary greater than the average annual remuneration
AVG(12*salary*(1+NVL(commission_pct,0))) for sales people.

Hint: (JOB_ID = ’SA_REP’)

SELECT last_name, job_id

FROM employees

WHERE salary*12 >

(SELECT AVG(12*salary*(1+NVL(commission_pct,0)))

FROM employees

WHERE job_id = ’SA_REP’)

AND job_id <> ’SA_REP’;

9. Display the names and salaries for all employees who work out of the Oxford office.
Hint: Use the LOCATIONS table to retrieve the city.

SELECT last_name OXFORDTEAM, salary

FROM employees

WHERE department_id =

(SELECT department_id

FROM departments

WHERE location_id =

(SELECT location_id

FROM locations

WHERE city = ’Oxford’));

Oracle9i: SQL for End Users C- 19

Practice 7 Solutions (continued)

10. Display the employee ID and last names for all employees who report to King.

SELECT employee_id, last_name

FROM employees

WHERE manager_id =

(SELECT employee_id

FROM employees

WHERE last_name=’King’);

11. Display all the employees whose manager works in department 20.

SELECT last_name

FROM employees

WHERE manager_id IN

(SELECT employee_id

FROM employees

WHERE department_id = 20);

12. Display the department ID, last names and job ids for all employees who work
in the sales department.

SELECT department_id, last_name, job_id

FROM employees

WHERE department_id =

(SELECT department_id

FROM departments

WHERE department_name = ’Sales’);

Oracle9i: SQL for End Users C- 20

Practice 8 Solutions

1. a. A single ampersand substitution variable prompts only once.

False. The single ampersand substitution variable prompts every time the command is
executed.

b. The DEFINE command is a SQL statement

False. The DEFINE command is a iSQL*Plus command. It is issued within a SQL
script file.

2. Write a statement that prompts a user for a department number at run time and then displays the
employee last name, number, and salary for each employee in the department:

SELECT last_name, employee_id, salary

FROM employees

WHERE department_id = &department_number;

3. Write a script that prompts the user for two dates in the DD-MON-YYYY format. The script displays the
employee last name, number, salary and hire date of each employee hired between these two dates.
Save the script as 8Lab3.sql using the Save Script button.

SELECT last_name, employee_id salary,

TO_CHAR(hire_date,’DD-MON-YYYY’) HIREDATE

FROM employees

WHERE hire_date BETWEEN

TO_DATE(’&low_date’,’DD-MON-YYYY’)

AND TO_DATE(’&high_date’,’DD-MON-YYYY’);

Oracle9i: SQL for End Users C- 21

Practice A Solutions

Insert data into the MY_EMPLOYEE table.

1. Run the statement in the labA_1.sql script to build the MY_EMPLOYEE table that will
be used for the lab.

CREATE TABLE my_employee

(id NUMBER(4) CONSTRAINT my_employee_id_nn NOT NULL,

last_name VARCHAR2(25),

first_name VARCHAR2(25),

userid VARCHAR2(8),

salary NUMBER(9,2));

2. Describe the structure of the MY_EMPLOYEE table to identify the column names.

DESCRIBE my_employee

3. Add the first row of data to the MY_EMPLOYEE table from the following sample data. Do
not list the columns in the INSERT clause.

INSERT INTO my_employee
VALUES (1, ’Patel’, ’Ralph’, ’rpatel’, 895);

4. Populate the MY_EMPLOYEE table with the second row of sample data from the
preceding list. This time, list the columns explicitly in the INSERT clause.
INSERT INTO my_employee (id, last_name, first_name,

userid, salary)
VALUES (2, ’Dancs’, ’Betty’, ’bdancs’, 860);

5. Confirm your addition to the table.

SELECT *

FROM my_employee;

ID LAST_NAME FIRST_NAME USERID SALARY

1 Patel Ralph rpatel 895

2 Dancs Betty bdancs 860

3 Biri Ben bbiri 1100

4 Newman Chad cnewman 750

5 Ropeburn Audrey aropebur 1550

Oracle9i: SQL for End Users C- 22

Practice A Solutions (continued)

6. Write an insert statement in a text file named loademp.sql to load rows into the MY_EMPLOYEE
table. Concatenate the first letter of the first name and the first seven characters of the last name to
produce the userid.

SET VERIFY OFF

INSERT INTO my_employee

VALUES (&p_id, ’&p_last_name’, ’&p_first_name’,

lower(substr(’&p_first_name’, 1, 1) ||

substr(’&p_last_name’, 1, 7)), &p_salary);

SET VERIFY ON

7. Populate the table with the next three rows of sample data by running the insert statement in the script
that you created.

SET VERIFY OFF

INSERT INTO my_employee

VALUES (&p_id, ’&p_last_name’, ’&p_first_name’,

lower(substr(’&p_first_name’, 1, 1) ||

substr(’&p_last_name’, 1, 7)), &p_salary);

SET VERIFY ON

8. Confirm your additions to the table.

SELECT *

FROM my_employee;

9. Make the data additions permanent.

COMMIT;

Oracle9i: SQL for End Users C- 23

Practice A Solutions (continued)

Update and delete data in the MY_EMPLOYEE table.

10.Change the last name of employee 3 to Drexler.

UPDATE my_employee

SET last_name = ’Drexler’

WHERE id = 3;

11.Change the salary to 1000 for all employees with a salary less than 900.

UPDATE my_employee

SET salary = 1000

WHERE salary < 900;

12. Verify your changes to the table.

SELECT id,last_name, first_name,userid,salary

FROM my_employee;

13.Delete Betty Dancs from the MY_EMPLOYEE table.

DELETE

FROM my_employee

WHERE last_name = ’Dancs’;

14. Confirm your changes to the table.

SELECT *

FROM my_employee;

15.Commit all pending changes.

COMMIT;

Control data transaction to the MY_EMPLOYEE table.

16.Populate the table with the to add Betty Dancs data by using the script that you created in step 6.

Oracle9i: SQL for End Users C- 24

Practice A Solutions (continued)

SET VERIFY OFF

INSERT INTO my_employee VALUES (&p_id, ’&p_last_name’,

’&p_first_name’,lower(substr(’&p_first_name’, 1, 1)

|| substr(’&p_last_name’, 1, 7)), &p_salary);

SET VERIFY ON

17. Confirm your addition to the table.

SELECT *

FROM my_employee;

18. Mark an intermediate point in the processing of the transaction.

SAVEPOINT step_18;

19. Empty the entire table.

DELETE

FROM my_employee;

20. Confirm that the table is empty.

SELECT *

FROM my_employee;

21. Discard the most recent DELETE operation without discarding the earlier INSERT operation.

ROLLBACK TO step_18;

22. Confirm that the the most recent DELETE has been discarded.

SELECT *

FROM my_employee;

Table Descriptions
and Data

D

Oracle9i: SQL for End Users D- 2

COUNTRIES Table

DESCRIBE countries

SELECT * FROM countries;

Oracle9i: SQL for End Users D- 3

DEPARTMENTS Table

DESCRIBE departments

SELECT * FROM departments;

Oracle9i: SQL for End Users D- 4

EMPLOYEES Table

DESCRIBE employees

SELECT * FROM employees;

Oracle9i: SQL for End Users D- 5

EMPLOYEES Table (continued)

Oracle9i: SQL for End Users D- 6

JOBS Table

DESCRIBE jobs

SELECT * FROM jobs;

Oracle9i: SQL for End Users D- 7

JOB_GRADES Table

DESCRIBE job_grades

SELECT * FROM job_grades;

Oracle9i: SQL for End Users D- 8

JOB_HISTORY Table

DESCRIBE job_history

SELECT * FROM job_history;

Oracle9i: SQL for End Users D- 9

LOCATIONS Table

DESCRIBE locations

SELECT * FROM locations;

Oracle9i: SQL for End Users D- 10

REGIONS Table

DESCRIBE regions

SELECT * FROM regions;

Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i Architecture

Oracle9i: SQL for End Users E- 2

E-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i Architecture

Oracle9i Architecture

Oracle9i components include the following:
• Oracle9i Database
• Oracle9i Application Server
• Oracle9i Developer Suite

Oracle9i Database

The Oracle9i Database introduces the following advanced and automated design features that refine
Oracle9i Application Server and Oracle9i Developer Suite to optimize performance for traditional
applications and the emerging hosted application market.

• Oracle9i Real Application Clusters: The next evolutionary step after Oracle Parallel Server,
Oracle9i Real Application Clusters provides out-of-the-box, linear scaling transparency,
compatibility with all applications without redesign, and the ability to rapidly add nodes and disks.

• Systems Management: Integrated system management products create a complete view of all
critical components that drive e-business processes. From the client and application server to the
database and host, Oracle9i quickly and completely assesses the overall health of an e-business
infrastructure.

• High Availability and Security: Setting a new standard for high availability, Oracle9i introduces
powerful new functionality in the areas of disaster recovery, system fault recovery, and planned
downtime. Oracle9i offers the most secure Internet platform for protecting company information
through multiple layers of security for data, users, and companies.

Oracle9i: SQL for End Users E- 3

Oracle9i Architecture (Continued)

Included are features for building Internet-scale applications, for providing security for users, and for
keeping data from different hosted user communities separate.

Oracle9i Application Server

Recognized as the leading application server for database-driven Web sites, Oracle9i Application Server
offers the industry’s most innovative and comprehensive set of middle-tier services.

• Comprehensive Middle-tier Services: Continued innovation within comprehensive middle-tier
services, ranging from self-service enterprise portals, to e-stores and supplier exchange, sustains
the Oracle9i Application Server as the industry's preferred application server for database-driven
Web sites.

• New Caching Technology: The new caching technology in Oracle9i can dramatically increase
Web-site performance, scalability, and availability. Greater numbers of users can be provided with
more personalized, dynamic Web content without adding more application or database servers.

• Scalability and Performance: Superb scalability and performance is now made available for all
Web applications. Oracle Portal services make it easy for Web site developers to deploy enterprise
portals with centralized management and unified security. Standard Java, with rich XML and
content management support, as well as back-office transactional applications built using Oracle
Forms Developer, can easily be deployed.

• Wireless Device Access: Oracle9iAS Wireless can provide access to all your existing applications
and content from any wireless Web device.

• Business Intelligence: Oracle9i Application Server has built-in reporting and ad-hoc query
functionality to derive business intelligence after Web site deployment.

Oracle9i Developer Suite

Oracle9i Developer Suite (formerly known as Oracle Internet Developer Suite) is a complete,
integrated suite of development tools for rapidly developing transactional Internet applications and
Web services using Java and XML. Oracle9i Developer Suite supports any language, any operating
system, any development style, any phase of the development life-cycle, and any of the latest
Internet standards.
Components of Oracle9i Developer Suite:
Internet Applications: Oracle Designer including Oracle Software Configuration Manager
(Oracle SCM), Oracle Forms Developer, and Oracle JDeveloper including Oracle Business
Components for Java.
Business Intelligence: Oracle Reports Developer, Oracle Discoverer, and Oracle Warehouse
Builder.

How are these components integrated ?

The diagram on the slide depicts a three-tier database architecture. Client machines in the first tier connect
through the HTTP protocol with an Oracle9i Application Server in the second tier. The Oracle9i
Application Server connects with an Oracle9i database in the third tier. The Oracle9i Developer Suite
interfaces with all the tiers in the architecture.

Oracle9i: SQL for End Users E- 4

E-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle Developer

Oracle’s Complete Solution

SQL
PL/SQL

Oracle Discoverer

Oracle Designer

Oracle’s Complete Solution
The Oracle object relational database management system (ORDBMS) is the Oracle core product. It
includes the Oracle9i Server and several tools that assist users in maintaining, monitoring, and using
data. The Oracle data dictionary is one of the most important components of the server. It consists of a
set of tables and views that provide a read-only reference to the database.

The ORDBMS handles various tasks such as the following:

• Managing the storage and definition of data

• Controlling and restricting data access and concurrency

• Providing backup and recovery

• Interpreting SQL and PL/SQL statements

Note: PL/SQL is an Oracle procedural language that extends SQL by adding application logic.

SQL and PL/SQL statements are used by all programs and users to access and manipulate data stored in
the Oracle database. In some application programs, you may access the database without directly writing
SQL or PL/SQL commands. For example you may click a button or select a check box, but the
applications implicitly use SQL or PL/SQL to execute the request.

iSQL*Plus is an Oracle tool that recognizes and submits SQL and PL/SQL statements to the server for
execution and contains its own command language.

Oracle offers a wide variety of state-of-the-art graphical user interface (GUI) driven tools to build
business applications as well as a large suite of software applications for many areas of business and
industry.

1

Index

2

Symbols

% 2-14

& 8-4

&&user_variable 8-4

&user_variable 8-4

* 1-8

_ 2-14

| | 1-21

A

Application Server o-19, o-20

ADD_MONTHS 4-34

ambiguous column name 5-12

American National Standards Institute o-26

AND 2-17

ANSI o-26

arithmetic expressions 1-13

AVG 6-6

B

BETWEEN 2-10

BREAK 8-30

C

Cartesian product 5-6

Character functions 3-8

COLUMN 8-24, 8-29

column alias. 1-19

COMMIT A-31

comparison operators 2-7

concatenation operator 1-21

Conversion functions 4-3

Keyword List -- i

3

COUNT 6-9

Create scrip 1-29

CROSS JOI 5-24

D

Database o-19,o-20,0-21

Date functions 4-3

DEFAULT A-14

DEFINE 8-17

DELETE A-21

DESC 2-29

DESCRIBE 1-37

DISTINCT 1-26

E

e-commerce o-17,o-30

ECHO 8-20

Equijoins 5-10

ESCAPE 2-14

Execute SQL 1-29

F

feedback 8-22

Functions 3-2

G

GROUP BY 6-15

group function 6-3

I

IN 2-11

INITCAP 3-11

INSERT A-5

International Standards Organization o-26

IS NULL 2-15

ISO o-26

Keyword List -- ii

4

J

Join 1-3

join condition 5-4

L

LAST_DAY 4-34

LIKE 2-13

literal 1-23

Locks A-44

LOWER 3-11

M

MAX 6-7

MERGE A-25

MIN 6-7

MONTHS_BETWEEN 4-34

Multiple-row function 3-6

Multiple-row subqueries 7-7,7-15

N

NATURAL JOIN 5-24

NEXT_DAY 4-34

non-equijoin 5-19

NOT 2-21

Number functions 3-8

NVL 3-19

O

operators 1-16

OR 2-19

Oracle internal data types o-24

Oracle8 Enterprise Edition o-16

ORDER BY 2-28

Keyword List -- iii

5

P

parentheses 1-18

Precedence 1-16,2-25

Projection 1-3

Q

quotation marks 2-6

R

read consistency A-42

relational database o-10

Relational database management systems o-6

ROLLBACK A-31

ROUND 3-15, 4-34,4-34

RR 4-6

S

SAVEPOINT A-33, A-34

script file 1-35

SET 8-22

Selection 1-3

self join 5-22

SET VERIFY 8-6

SHOW 8-20

SHOW ALL 8-20

Single-row function 3-6

Single-row subqueries 7-7

SQL*Plus 1-28

subquery 7-5

substitution variable 8-4

SYSDATE 4-7

Keyword List -- iv

6

T

TO_CHAR 4-13

Transactions A-30

TRUNC 3-16, 4-34

tuple o-12

U

UNDEFINE 8-18

UPDATE A-16

UPPER 3-11

USING 5-24

W

WHERE 2-4

WITH CHECK OPTION A-12

Keyword List -- v

